Mini Review

Lipid-induced cardiovascular diseases

Sumeet Manandhar, Sujin Ju, Dong-Hyun Choi and Heesang Song*

Published: 23 November, 2017 | Volume 2 - Issue 1 | Pages: 085-094

Cardiovascular diseases are the leading cause of death worldwide. There are many evidences that the dysfunctioning lipotoxicity is the one of major factors of cardiovascular diseases such as, atherosclerosis, hypertension, and coronary heart disease. Obesity and diabetes increase circulating lipids that are likely with more generation of toxic intermediates, which leading to the complications associated with cardiovascular diseases. Indeed, lipotoxicity is a metabolic syndrome caused by abnormal lipid accumulation, which leads to cellular dysfunction and necrosis. Here we review the factors that induced pathogenesis of cardiovascular diseases by lipid accumulation and the mechanisms underlying the lipotoxicity.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001018 Cite this Article Read Full Article PDF


Lipotoxicity; Cardiovascular diseases; Pathogenesis


  1. Mattes RD. Fat taste and lipid metabolism in humans. Physiol Behav. 2005; 86: 691-697. Ref: https://goo.gl/nN6YSn
  2. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003; 14: 281-287. Ref: https://goo.gl/ScoErq
  3. Alshehri AM. Metabolic syndrome and cardiovascular risk. J Family Community Med. 2010; 17: 73-78. Ref: https://goo.gl/d8mLvy
  4. Chavez JA,Summers SA. Lipid oversupply. selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta. 2010; 1801: 252-265. Ref: https://goo.gl/YB4P7f
  5. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001; 24: 683-689. Ref: https://goo.gl/KRiXB2
  6. Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, et al. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol. 2002; 156: 1070-1077. Ref: https://goo.gl/5mcBbN
  7. Turpin SM, Ryall JG, Southgate R, Darby I, Hevener AL, et al. Examination of 'lipotoxicity' in skeletal muscle of high-fat fed and ob/ob mice. J Physiol. 2009; 587: 1593-1605. Ref: https://goo.gl/npCrgA
  8. Winzell MS, Svensson H, Enerback S, Ravnskjaer K, Mandrup S, et al. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase. Diabetes. 2003; 52: 2057-2065. Ref: https://goo.gl/obLxVH
  9. Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA. 1998; 95: 2498-2502. Ref: https://goo.gl/djrqfD
  10. Prentki M, Joly E, El-Assaad W,Roduit R, Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. 2002; 51: 405-413. Ref: https://goo.gl/bnLzvh
  11. Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002; 51: 1437-1442. Ref: https://goo.gl/BgdR6t
  12. Robertson RP, Harmon J, Tran PO,Poitout V, Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004; 53: 119-124. Ref: https://goo.gl/Xif2YQ
  13. Trauner M, Arrese M,Wagner M, Fatty liver and lipotoxicity. Biochim Biophys Acta. 2010; 1801: 299-310. Ref: https://goo.gl/8xD98d
  14. Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, et al. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest. 2001; 107: 1403-1409. Ref: https://goo.gl/WvQCb8
  15. Bobulescu IA, Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 2010; 19: 393-402. Ref: https://goo.gl/CpBSf2
  16. Kim JA, Montagnani M, Chandrasekran S,Quon MJ. Role of lipotoxicity in endothelial dysfunction. Heart Fail Clin. 2012; 8: 589-607. Ref: https://goo.gl/SbMja6
  17. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014; 2950-2959. Ref:
  18. Abel ED, Litwin SE,Sweeney G, Cardiac remodeling in obesity. Physiol Rev. 2008; 88: 389-419. Ref: https://goo.gl/jh2U9f
  19. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, et al. Obesity and the risk of heart failure. N Engl J Med. 2002; 347: 305-313. Ref: https://goo.gl/AazmFW
  20. Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes. 2001; 50: 2105-2113. Ref: https://goo.gl/sJsYL8
  21. DeFronzo RA, Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010; 53: 1270-1287. Ref: https://goo.gl/sRDzGc
  22. Wende AR,Abel ED, Lipotoxicity in the heart. Biochim Biophys Acta. 2010; 1801: 311-319. Ref: https://goo.gl/RZ2tSC
  23. Goldberg IJ, Trent CM,Schulze PC, Lipid metabolism and toxicity in the heart. Cell Metab. 2012; 15: 805-812. Ref: https://goo.gl/Jb72N7
  24. Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest. 2003; 111: 419-426. Ref: https://goo.gl/MFauH3
  25. Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008; 49: 2101-2112. Ref: https://goo.gl/rALwnF
  26. Halton TL, Willett WC, Liu S, Manson JE, Albert CM, et al. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N Engl J Med. 2006; 355: 1991-2002. Ref: https://goo.gl/NvdZ6S
  27. Hu FB,Willett WC, Optimal diets for prevention of coronary heart disease. JAMA. 2002; 288: 2569-2578. Ref: https://goo.gl/qgXQY9
  28. Lavie CJ, Milani RV, Mehra MR,Ventura HO, Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol. 2009; 54: 585-594. Ref: https://goo.gl/QNpSqw
  29. Mozaffarian D,Wu JH, Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011; 58: 2047-2067. Ref: https://goo.gl/t66E6q
  30. Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, et al. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes. 2002; 51: 2587-2595. Ref: https://goo.gl/aj1MRb
  31. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. Faseb j. 2004; 1692-1700. Ref: https://goo.gl/dPWBiw
  32. Watson KE, Peters Harmel AL,Matson G. Atherosclerosis in type 2 diabetes mellitus: the role of insulin resistance. J Cardiovasc Pharmacol Ther. 2003; 253-260. Ref: https://goo.gl/gPizLV
  33. Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest. 2005; 1699-1702. Ref: https://goo.gl/RcohyL
  34. Terrand J, Bruban V, Zhou L, Gong W, El Asmar Z, et al. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem. 2009; 381-388. Ref: https://goo.gl/CCydTp
  35. Alexander RW. Theodore Cooper Memorial Lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995; 155-161. Ref: https://goo.gl/9Rd8uC
  36. Hemnes AR, Brittain EL, Trammell AW, Fessel JP, Austin ED, et al. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med. 2014; 325-334. Ref: https://goo.gl/b6Ua5j
  37. Zhao X. Prevention of local lipotoxicity: a new renoprotective mechanism of peroxisome proliferator-activated receptor-alpha activation in hypertension and obesity? Hypertens Res. 2009; 821-823. Ref: https://goo.gl/T7CDLj
  38. Kelly DP, Hale DE, Rutledge SL, Ogden ML, Whelan AJ, et al. Molecular basis of inherited medium-chain acyl-CoA dehydrogenase deficiency causing sudden child death. J Inherit Metab Dis. 1992; 171-180. Ref: https://goo.gl/FPmU8b
  39. Kurtz DM, Rinaldo P, Rhead WJ, Tian L, Millington DS, et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA. 1998; 15592-15597.Ref: https://goo.gl/DqxeyC
  40. Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep. 2013; 109-121. Ref: https://goo.gl/qyGyci
  41. Hickson-Bick DL, Buja LM, McMillin JB. Palmitate-mediated alterations in the fatty acid metabolism of rat neonatal cardiac myocytes. J Mol Cell Cardiol. 2000; 511-519. Ref: https://goo.gl/1se7ws
  42. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol. 2000; H2124-2132.Ref: https://goo.gl/rUwtzX
  43. Dbaibo GS, Pushkareva MY, Rachid RA, Alter N, Smyth MJ, et al. p53-dependent ceramide response to genotoxic stress. J Clin Invest.1998; 102: 329-339.Ref: https://goo.gl/mBJUV5
  44. Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, et al. Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem. 2005; 26425-26434. Ref: https://goo.gl/WaV9Fu
  45. Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, et al. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett. 2001; 7-12. Ref: https://goo.gl/JYXgJj
  46. Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, et al. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997; 21388-21395.Ref: https://goo.gl/TnhYZ4
  47. Siskind LJ. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr. 2005; 143-153. Ref: https://goo.gl/1RMjof
  48. Weiss B, Stoffel W. Human and murine serine-palmitoyl-CoA transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem. 1997; 239-247.Ref: https://goo.gl/HB7Yc7
  49. Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, et al. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998; 32487-32490.Ref: https://goo.gl/o9DBkr
  50. Merrill AH, Jr. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem. 2002; 25843-25846. Ref: https://goo.gl/xy7cMM
  51. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994; 525-535.Ref: https://goo.gl/ahzCL7
  52. Hardie DG, Carling D,Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998; 821-855. Ref: https://goo.gl/tP4hP3
  53. Chabowski A, Momken I, Coort SL, Calles-Escandon J, Tandon NN, et al. Prolonged AMPK activation increases the expression of fatty acid transporters in cardiac myocytes and perfused hearts. Mol Cell Biochem. 2006; 201-212. Ref: https://goo.gl/E4DPKj
  54. Habets DD, Coumans WA, Voshol PJ, den Boer MA, Febbraio M, et al. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun. 2007; 204-210.Ref: https://goo.gl/Qo1fFp
  55. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002; 121-130.Ref: https://goo.gl/Tgo6Jk
  56. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol, 2000; 1868-1876. Ref: https://goo.gl/1XuSzq
  57. Karbowska J, Kochan Z, Smolenski RT. Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart. Cell Mol Biol Lett. 2003; 49-53. Ref: https://goo.gl/zfFVAu
  58. Masamura K, Tanaka N, Yoshida M, Kato M, Kawai Y, et al. Myocardial metabolic regulation through peroxisome proliferator-activated receptor alpha after myocardial infarction. Exp Clin Cardiol. 2003; 61-66. Ref: https://goo.gl/LPRDH7
  59. Narravula S,Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol. 2001; 7543-7548. Ref: https://goo.gl/pvsQDV
  60. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem. 1998; 5678-5684. Ref: https://goo.gl/6N7BKG
  61. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995; 3012-3022. Ref: https://goo.gl/EVfL3d
  62. Kersten S. Peroxisome proliferator activated receptors and lipoprotein metabolism. PPAR Res. 2008; 132960. Ref: https://goo.gl/vmxnLo
  63. Yoon M. PPARalpha in Obesity: Sex Difference and Estrogen Involvement. PPAR Res. 2010. Ref: https://goo.gl/dFMJ2x
  64. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, et al. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A. 1992; 11059-11063. Ref: https://goo.gl/49QxVc
  65. Jalili T, Manning J,Kim S. Increased translocation of cardiac protein kinase C beta2 accompanies mild cardiac hypertrophy in rats fed saturated fat. J Nutr. 2003; 358-361. Ref: https://goo.gl/E9WeXu
  66. Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A. 2003; 229-234. Ref: https://goo.gl/TzbGv6
  67. Kim DH, Cho YM, Lee KH, Jeong SW,Kwon OJ. Oleate protects macrophages from palmitate-induced apoptosis through the downregulation of CD36 expression. Biochem Biophys Res Commun. 2017; 477-482. Ref: https://goo.gl/ftVFm9
  68. Wen SY, Velmurugan BK, Day CH, Shen CY, Chun LC, et al. High density lipoprotein (HDL) reverses palmitic acid induced energy metabolism imbalance by switching CD36 and GLUT4 signaling pathways in cardiomyocyte. J Cell Physiol. 2017; 3020-3029. Ref: https://goo.gl/oph6mt
  69. Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, et al. Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes. 2005; 3530-3540. Ref: https://goo.gl/LtGceU
  70. Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, et al. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes. 2002; 3020-3024. Ref: https://goo.gl/nEBTVo
  71. Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004; 2366-2374. Ref: https://goo.gl/oeS4W2
  72. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006; 466-473. Ref: https://goo.gl/2mXJ4A
  73. Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2000; 1104-1113. Ref: https://goo.gl/DkGsHp
  74. Kolter T, Uphues I,Eckel J. Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol. 1997; 59-67. Ref: https://goo.gl/GcveR7
  75. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 2004; 457-461. Ref: https://goo.gl/bRDo8T
  76. Wu W, Muchir A, Shan J, Bonne G,Worman HJ. Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation. 2011; 53-61. Ref: https://goo.gl/Qa4PS9
  77. Turdi S, Kandadi MR, Zhao J, Huff AF, Du M, et al. Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol. 2011; 712-722. Ref: https://goo.gl/ijV3gp
  78. Li YJ, Wang PH, Chen C, Zou MH,Wang DW. Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin. 2010; 560-569. Ref: https://goo.gl/RV6C6P
  79. Tan SH, Shui G, Zhou J, Li JJ, Bay BH, et al. Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem. 2012; 14364-14376. Ref: https://goo.gl/MBkRby
  80. Marsh SA, Powell PC, Dell'italia LJ,Chatham JC. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 2013; 648-656. Ref: https://goo.gl/JkXCdK
  81. Khan MJ, Rizwan Alam M, Waldeck-Weiermair M, Karsten F, Groschner L, et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem. 2012; 21110-21120. Ref: https://goo.gl/jBfij3
  82. Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012; 1848-1859. Ref: https://goo.gl/2K6CYx
  83. Ussher JR, Folmes CD, Keung W, Fillmore N, Jaswal JS, et al. Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PLoS One. 2012; e37703. Ref: https://goo.gl/HeE3o4
  84. Rame JE, Barouch LA, Sack MN, Lynn EG, Abu-Asab M, et al. Caloric restriction in leptin deficiency does not correct myocardial steatosis: failure to normalize PPAR{alpha}/PGC1{alpha} and thermogenic glycerolipid/fatty acid cycling. Physiol Genomics. 2011; 726-738. Ref: https://goo.gl/c9ZM47
  85. Gordon GB. Saturated free fatty acid toxicity. II. Lipid accumulation, ultrastructural alterations, and toxicity in mammalian cells in culture. Exp Mol Pathol. 1977; 262-276. Ref: https://goo.gl/dj9TM7
  86. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011; 2102-2110. Ref: https://goo.gl/res3cF
  87. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011; 2159-2168. Ref: https://goo.gl/ZfCy7H
  88. Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, et al. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem. 2012; 23852-23863. Ref: https://goo.gl/6QDxYr
  89. Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 2011; 434-446. Ref: https://goo.gl/W5wpR7
  90. Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol. 2012; 309-319. Ref: https://goo.gl/LyUoeT

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More