Mini Review

Angiotensin II type 1 receptor and the activation of Myosin Light-Chain Kinase and Protein Kinase C-βII: Mini Review

Gerry A Smith*

Published: 17 February, 2020 | Volume 5 - Issue 1 | Pages: 024-028

The involvement of the angiotensin II type 1 receptor in the Frank-Starling Law of the Heart, where the various activations are very limited, allows simple analysis of the kinase systems involved and thence extrapolation of the mechanism to that of angiotensin control of activation of cardiac and skeletal muscle contraction. The involvement of phosphorylation of the myosin light chain in the control of contraction is accepted but not fully understood. The involvement of troponin-I phosphorylation is also indicated but of unknown mechanism. There is no known signal for activation of myosin light chain kinase or Protein Kinase C-βII other than Ca2+/calmodulin but the former is constitutively active and thus has to be under control of a regulated inhibitor, the latter kinase may also be the same. Ca2+/calmodulin is not activated in Frank-Starling, i.e. there are no diastolic or systolic [Ca2+] changes. I suggest here that the regulated inhibition is by myosin light chain phosphatase and/or β-arrestin. Angiotensin activation, not involving G proteins. is by translocation of the β-arrestin from the sarcoplasm to the plasma membrane thus reducing its kinase inhibition action in the sarcoplasm. This reduced inhibition has been wrongly attributed to a mythical downstream agonist property of β-arrestin.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001081 Cite this Article Read Full Article PDF


Frank-Starling; angiotensin receptor; muscle contraction; myosin light chain kinase; Protein Kinase C-βII; myosin light chain phosphatase; β-arrestin; myosin bound MgATP ⇌ MgADP-phosphomyosin equilibrium; myosin LC affinity for Ca2+  FullText PDF


  1. van der Velden J, de Jong JW, Owen VJ, Burton PB, Stienen GJ, Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc Res. 2000; 46: 487–495. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10912459
  2. Steinberg SF. Cardiac actions of protein kinase C isoforms. Physiology. 2012; 27: 130–139. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22689788
  3. Chandra M, Dong WJ, Pan BS, Cheung HC, Solaro RJ. Effects of Protein Kinase A Phosphorylation on Signaling between CardiacTroponin I and the N-Terminal Domain of Cardiac Troponin C. Biochemistry; 1997; 36: 13305-13311. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9341222
  4. Kobayashi T, Dong WJ, Burkart EM, Cheung HC, Solaro RJ. Effects of Protein Kinase C Dependent Phosphorylation and a Familial Hypertrophic Cardiomyopathy-Related Mutation of Cardiac Troponin I on Structural Transition of Troponin C and Myofilament Activation. Biochemistry. 2004; 43: 5996-6004. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15147183
  5. Smith GA. The Mechanisms of the Frank-Starling Law and Familial Cardiomyopathy are Different. The Function of Myosin Binding Protein-C is Retained on Myocyte Length Increase and Force Generated is Kinase controlled. OAT J Integr Cardiol. 2019; 5.
  6. Smith GA. Calcium, Actomyosin Kinetics, Myosin Binding Protein-C and Hypertrophic Cardiomyopathy. OAT J Integr Cardiol. 2019; 5.
  7. Solaro RJ, Shiner JS. Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils. Circ Res. 1972; 39: 8–14. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/132310
  8. Lionne C1, Brune M, Webb MR, Travers F, Barman T. Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases. FEBS Letters. 1995; 364: 59-62. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7750544
  9. Lymn RW, Taylor EW. Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry. 1970; 9: 2975–2983. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/4248809
  10. Pan BS, Solaro RJ. Calcium-binding properties of troponin-C in detergent skinned heart muscle fibers. J Biol Chem. 1987; 262: 7839-7849. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3584144
  11. Morimoto S, Ohtsuki I. Ca2+ binding to cardiac troponin-C in the myofilament lattice and its relation to myofibrillar ATPase activity. Eur J Biochem. 1994; 226: 597-602. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8001574
  12. Kampourakis T, Yan Z, Gautel M, Sun YB, Irving M. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc Natl Acad Sci U S A. 2014; 111: 18763–18768. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25512492
  13. Hofmann PA, Hartzell HC, Moss RL. Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol. 1991; 97: 1141–1463. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1678777
  14. Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M. et al. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife. 2017; 6: e24081. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28229860
  15. de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, et al. Myofilament length dependent activation. J Mol Cell Cardiol. 2010; 48: 851–858. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20053351
  16. Akella AB, Su H, Sonnenblick EH, Rao VG, Gulati J. The Cardiac Troponin C Isoform and the Length Dependence of Ca2+ Sensitivity of Tension in Myocardium. J Mol Cell Cardiol. 1997; 29: 381–389. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9040052
  17. Tachampa K, Wang H, Farman GP, de Tombe PP. Cardiac Troponin I Threonine 144. Role in Myofilament Length–Dependent Activation. Circ Res. 2007; 101: 1081-1083. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17975107
  18. Wang H, Grant JE, Doede CM, Sadayappan S, Robbins J, et al. PKC-βII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144. J Mol Cell Cardiol. 2006; 41: 823-833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17010989
  19. Blobe GC, Stribling DS, Fabbro D, Stabel S, Hannun YA. Protein Kinase C-βII specifically binds to and is activated by F-actin. J Biol Chem. 1996; 271: 26: 15823–15830. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8663149
  20. Abraham DM, Davis RT, Warren CM, Mao L, Wolska BM. et al. β-Arrestin mediates the Frank–Starling mechanism of cardiac contractility. Proc Natl Acad Sci U S A. 2016; 113: 50: 14426–14431. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27911784
  21. Ponnam S, Sevrieva I, Sun YB, Irving M, Kampourakis T. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. PNAS. 2019; 116: 15485-15494.
  22. Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, et al. The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2007; 1768: 913-922.
  23. Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Frontiers in Pharmacology. 2019; 10: 125. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389790/
  24. Wolf H, Hofmann F. Purification of myosin light chain kinase from bovine cardiac muscle. Proc Natl Acad Sci U S A. 1980; 77: 5852-5855. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6934518
  25. Walsh MP, Vallet B, Autric F, Demaille JG. Purification and Characterization of Bovine Cardiac Calmodulin dependent Myosin Light Chain Kinase. J Biol Chem. 1979; 254: 12136-12144. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/500701
  26. Wilden U, Hall SW, Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986; 83: 1174–1178. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3006038
  27. Wilden U, Wüst E, Weyand I, Kühn H. Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett. 1986; 207: 292–295. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3770202
  28. Turu G, Balla A, Hunyady L. The Role of b-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne). 2019; 10: 519. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31447777
  29. Gagnon L, Yubo Cao Y, Cho A, Sedki D, Huber T, et al. Genetic code expansion and photocross-linking identify different β-arrestin binding modes to the angiotensin II type 1 receptor. J Biol Chem. 2019; 294; 17409-17420.
  30. Ishikawa Y, Kurotani R. Cardiac Myosin Light Chain Kinase, A New Player in the Regulation of Myosin Light Chain in the Heart. Circ Res. 2008; 102: 516-518. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18340016
  31. Stelzer JE, Patel JR, Moss RL. Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. J Gen Physiol. 2006; 128: 261–272. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16908724
  32. Chang AN, Kamm KE, Stull JT. Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol. 2016; 101: 35–43. PubMed:
  33. Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL, et al. Cardiac myosin-binding protein C and troponin-I phosphorylation independently modulate myofilament length-dependent activation. J Biol Chem. 2015; 290: 29241–29249. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26453301
  34. Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol. 2016; 7: Article 38. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753332/
  35. Sheikh F, Lyon RC, Chen J. Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene. 2015; 569: 14–20. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26074085
  36. Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, et al. Cardiac Myosin Light Chain Kinase Is Necessary for Myosin Regulatory Light Chain Phosphorylation and Cardiac Performance in Vivo. J Biol Chem. 2010; 285: 40819-40829. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003383/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More