Abstract

Review Article

Soliton phenomena in the process of the functioning of the heart

Adam Adamski*

Published: 14 March, 2023 | Volume 8 - Issue 1 | Pages: 021-028

The biochemical model explains the intricate mechanisms of psychobiological life. He still cannot explain what the transition from inanimate to living matter is all about. Where is the threshold and what is its essence, what role do biochemical processes play in the coherence of the soma with consciousness and its impact on the soma and vice versa? A similar problem is with other mental processes, their nature does not fit into the biochemical model of life and is inexplicable on the basis of biochemical interactions, again it is much easier to describe it in the light of quantum processes - including wave physics. It is similar to the functioning of the heart or other organs, where only the biochemical processes of the cell are considered, ignoring the bioelectronic processes. Man is not only a purely biological construct but also contains the basis of biochemical, bioelectronic, information, and cybernetic processes that are responsible for shaping the psychobiological processes of man. Contemporary biosystems in science are considered at the level of corpuscular structures, ignoring energy and information structures. By shifting the cognitive emphasis towards energy and information structures, the organism can be perceived as a quantum generator of information: electromagnetic, soliton, acoustic, spin and bioplasma. This bioelectronic construction creates homo electronics with his electronic personality.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001149 Cite this Article Read Full Article PDF

Keywords:

Bioelectronic processes; Transformation; Spin and Soliton wave; Freeradical; Heart pulse

References

  1. Kołodzińska A, Główczyńska R, Grabowski Elektrokardiologia PZWL Wydawnictwo Lekarskie. Warszawa, 2022.
  2. Mroczko AJ, Kramer L. Cyfrowe metody przetwarzanie sygnałów biomedycznych, Wydawnictwo Naukowe UAM, Poznań, 2001.
  3. Główczyńska R. Diagnostyka kardiologiczna w praktyce. Wydawca: PZWL Warszawa, 2020.
  4. Laflamme Kardiologia Kompendium. Wyd. 1. Tłumacz, Michał Kowara Wydawca: PZWL Wydawnictwo Lekarskie. Warszawa 2021.
  5. Bieganowska K, Maria Miszczak-Knecht M. Redakcja naukowa: Arytmie serca u dzieci. Wydawca: PZWL Wydawnictwo Lekarskie. Warszawa 2021.
  6. Wysokiński Nowości w elektrofizjologii i elektroterapii. Zasady postępowania, cz. 2 PZWL Wydawnictwo Lekarskie. Warszawa 2022.
  7. Strus J. Tętnie O. Z oryginału łacińskiego przełożyli Jan Wikarjak i Maria Wikariak. Wydawnictwo poznańskie. Poznań 1968r.
  8. Mizia-Stec K, Maria Trusz-Gluza Zaburzenia rytmu serca wyd.III zaktualizowane Wydawca: Medical Tribune Polska Warszawa. 2018.
  9. Straburzyńska-Migaj E, Lesiak Redakcja naukowa: Kardiologia w gabinecie lekarza podstawowej opieki zdrowotnej. Wydawca: PZWL Wydawnictwo Lekarskie Warszawa. 2022.
  10. Drews K, Malewski K, Słomko Redakcja naukowa: Kardiotokografia kliniczna Wydawca: PZWL Wydawnictwo Lekarskie. Warszawa, 2022.
  11. Brizhik L. Soliton mechanism of charge energii and information transfer in biosystem. Wyd. World Scientific Publishing. Co Ptc. Ltd. Singapore 2003.
  12. Brizhik L. Effects of magnetic fields on soliton mediated charge transport in biological systems. J Adv Phys. 2014; 6: 1191-1201.
  13. Brizhik L. Influence of electromagnetic field on soliton-mediated charge transport in biological systems. Electromagn Biol Med. 2015;34(2):123-32. doi: 10.3109/15368378.2015.1036071. PMID: 26098523.
  14. Adamski A. The importance of movement, solitons and coherent light in the Development of mental processes. Journal of Advanced Neuroscience Research. 2016; 3:24-31.
  15. Trąbka J. Neuropsychologia światła. Wyd. Uniwesytet Jagielloński. Kraków. 2003.
  16. Adamski A. Soliton perception in the human biological system Advances in Tissue Engineering & Regenerative Medicine. 2020; 6.
  17. Fukada E, Hara K. Piezoelectric effect in blood vessel walls. J Phys Soc Jpn. 1969; 26(3): 777–780.
  18. Bdikin I, Heredia A, Neumayer S, Bystrov VS. Local piezoresponse and polarization switching in nucleobase thymine microcrystals. August 2015 Journal of Applied Physics 118(7) DOI:1063/1.4927806
  19. Guerin S, Tofail SAM, Thompson D. Organic piezoelectric materials: milestones and potential. NPG Asia Mater. 2019; 11: 1-5.
  20. Liu Y, Wang Y, Chow MJ, Chen NQ, Ma F, Zhang Y, Li J. Glucose suppresses biological ferroelectricity in aortic elastin. Phys Rev Lett. 2013 Apr 19;110(16):168101. doi: 10.1103/PhysRevLett.110.168101. Epub 2013 Apr 15. PMID: 23679639; PMCID: PMC3865614.
  21. Lemanov V. Ferroelectric and piezoelectric properties of protein amino acids and their compounds. Phys Solid State. 2012; 54:1841–1842.
  22. Lemanov V. Piezoelectric and pyroelectric properties of protein amino acids as basic materials of soft state physics. 2000; 238: 211–218.
  23. Wise SG, Yeo GC, Hiob MA, Rnjak-Kovacina J, Kaplan DL, Ng MK, Weiss AS. Tropoelastin: a versatile, bioactive assembly module. Acta Biomater. 2014 Apr;10(4):1532-41. doi: 10.1016/j.actbio.2013.08.003. Epub 2013 Aug 11. PMID: 23938199; PMCID: PMC3879170.
  24. Brooke BS, Bayes-Genis A, Li DY. New insights into elastin and vascular disease. Trends Cardiovasc Med. 2003 Jul;13(5):176-81. doi: 10.1016/s1050-1738(03)00065-3. PMID: 12837579.
  25. Debelle L, Tamburro AM. Elastin: molecular description and function. Int J Biochem Cell Biol. 1999 Feb;31(2):261-72. doi: 10.1016/s1357-2725(98)00098-3. PMID: 10216959.
  26. Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007 Oct;28(30):4378-98. doi: 10.1016/j.biomaterials.2007.06.025. Epub 2007 Jul 12. PMID: 17631957.
  27. Mithieux SM, Wise SG, Weiss AS. Tropoelastin--a multifaceted naturally smart material. Adv Drug Deliv Rev. 2013 Apr;65(4):421-8. doi: 10.1016/j.addr.2012.06.009. Epub 2012 Jul 8. PMID: 22784558.
  28. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998 May 21;393(6682):276-80. doi: 10.1038/30522. PMID: 9607766.
  29. Baldock C, Oberhauser AF, Ma L, Lammie D, Siegler V, Mithieux SM, Tu Y, Chow JY, Suleman F, Malfois M, Rogers S, Guo L, Irving TC, Wess TJ, Weiss AS. Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4322-7. doi: 10.1073/pnas.1014280108. Epub 2011 Feb 28. PMID: 21368178; PMCID: PMC3060269.
  30. Adamski A. Rola procesów bioelektronicznych w kształtowaniu percepcji zmysłowej i funkcji psychicznych człowieka. ISBN 83-226-1508-6. Wyd. Uniwerystet Śląski w Katowicach – 2006.
  31. Davydov S. Solitons in Molecular Systems. Kluwer Academic Publishers, Norwell, MA. USA. 1991.
  32. Caspi S, Ben-Jacob E. Conformation changes and folding of proteins mediated by Davydov solitons. Physics Letters A. 2000; 272:124-129.
  33. Sadowski J, Wierzbicki K, Przybyłowski P, Milaniak I, Bochenek M. Mechaniczne wspomaganie czynności serca [w : niewydolność serca] Medycyna Praktyczna Kraków. 2018.
  34. Hammerschlag R, Levin M, McCraty R, Bat N, John B, Ives A, Lutgendorf S, James L, Oschman J. Biofield Science; Healing: Toward a Transdisciplinary Approach. 2015.
  35. Craty R. Chapter published in: Clinical Applications of Bioelectromagnetic Medicine, edited by PJ. Rosch and MS. Markov. New York: Marcel Dekker: 562, Markov. New York: Marcel Dekker, 2004: 541-562. McCraty (Heart Math Institute).
  36. Lomdahl PS. What is Solitone. Los Alamos Science. 1984.
  37. Brizhik L. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells. Electromagnetic Biology and Medicine. 2017; 36: 357-378.
  38. Salasnich L, Parola A, Reatto L. Condensate bright solitons under Transverse confinement. Phys Rev. 2002; A66: 043603.
  39. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul;4(8):118-26. doi: 10.4103/0973-7847.70902. PMID: 22228951; PMCID: PMC3249911.
  40. Adamski A. Life is in quantum processes. Advances in Tissue Engineering & Regenerative Medicine: 2020.
  41. McGinness J, Corry P, Proctor P. Amorphous semiconductor switching in melanins. Science. 1974 Mar 1;183(4127):853-5. doi: 10.1126/science.183.4127.853. PMID: 4359339.
  42. Brizhik L. Electron correlations in molecular chains. Chapter 15. In: Correlations in Condensed Matter under Extreme Conditions, Eds. G. G. N. Angilella and A. La Magna, Springer, 2016; 191-207.
  43. Adamski A. The biochemical model of life loses its scientific value. Insights in Biomedicine. 2019; 4: 1-6,
  44. Sedlak W. Bioelektronika 1967-1977. Warszawa: IW PAX. 1979.
  45. Bentley WA, Humphreys WJ. Snow Crystals (Dover Pictorial Archive). Published by Dover Publications. 1962. ISBN 10: 0486202879ISBN 13: 9780486202877
  46. Adamski A, Układ biologiczny, jako urządzenie elektroniczne w poznawaniu środowiska i samego siebie. Praca zbiorowa pod red. Adama Adamskiego. Człowiek – jego bioelektroniczna konstrukcja a percepcja muzyki. Drukarnia Propak Kęty 2006.
  47. Adamski A. W poszukiwaniu natury świadomości w procesach kwantowych. Wydawnictwo Uniwersytet Śląski w Katowicach. Katowice. 2016.
  48. Adamski A. Role of Bose-Einstein condensate and bioplasma in shaping Consciousness NeuroQuantology, 2016; 14: 896- 907.
  49. Adamski A. Modifying Phase Structures by Solitons and Bioplasma in Biological Systems. EC Neurology. 2020; 12: 01-05.
  50. Boudoue H, Justin M, Kudryashov N. Solitons in thin-film ferroelectric material. Physica Scripta. 93(7): 2018.
  51. Guerin S, Stapleton A, Chovan D, Mouras R, Gleeson M, McKeown C, Noor MR, Silien C, Rhen FMF, Kholkin AL, Liu N, Soulimane T, Tofail SAM, Thompson D. Control of piezoelectricity in amino acids by supramolecular packing. Nat Mater. 2018 Feb;17(2):180-186. doi: 10.1038/nmat5045. Epub 2017 Dec 4. PMID: 29200197.
  52. Kawalec W, Krystyna Kubicka K. Kardiologia dziecięca Tom 1-2 Wydawca: PZWL Wydawnictwo Lekarskie. Warszawa 2020.
  53. Li B, Daggett V. Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil. 2002;23(5-6):561-73. doi: 10.1023/a:1023474909980. PMID: 12785105.
  54. Liu Y, Zhang Y, Chow MJ, Chen QN, Li J. Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy. Phys Rev Lett. 2012 Feb 17;108(7):078103. doi: 10.1103/PhysRevLett.108.078103. Epub 2012 Feb 13. PMID: 22401260; PMCID: PMC3499944.
  55. Malouf JF, Edwards WD, Tajil AJ, Seward JB. Functional anatomy of the heart. In: Fuster,F, Alexander, RW, O’Rourke, RA editors. Hurst’s: The Heart. 10th edn. McGraw-Hill Inc. 2001; 19–62.
  56. Pouget J, Maugin GA. Solitons and electroacoustic interactions in ferroelectric crystals. I Single solitons and domain walls. Physical Review B. 1984; 30(9):5306.
  57. Pouget J, Maugin GA. Solitons and electroacoustic interactions in ferroelectric crystals. II. Interactions of solitons and radiations. Phys Rev B Condens Matter. 1985 Apr 1;31(7):4633-4649. doi: 10.1103/physrevb.31.4633. PMID: 9936400.
  58. Pieniężny A. Analiza czasowo-częstotliwościowa sygnału ekg. Biuleten WAT. 2009; 58: 45-63.
  59. Rosch PJ, Markov MS. Chapter published in: Clinical Applications of Bioelectromagnetic Medicine, edited by. New York: Marcel Dekker, 2004: 541-562. Markov.
  60. Salasnich L. Dynamics of a Bose-Einstein-condensate bright soliton in an expulsive potential. Phys Rev. 2004; A70: 053617.
  61. Sedlak W. Homo electronicus. Warszawa: PIW. 1980.
  62. Sedlak W. Postępy fizyki życia. Warszawa: IW PAX, 1984.
  63. Szafran B. Interpretacja EKG. Kurs zaawansowany. Wyd. PZWL Wydawnictwo Lekarskie Warszawa, 2020.

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?