Abstract

Research Article

A proposal of risk indicators for pathological development from hemodynamic simulation: application to aortic dissection

Wenyang Pan, Pascale Kulisa*, Benyebka Bou-Saïd, Mahmoud El Hajem, Serge Simoëns and Monica Sigovan

Published: 28 March, 2023 | Volume 8 - Issue 1 | Pages: 029-038

Cardiovascular diseases are the leading cause of mortality in the industrialized world. Among these diseases, aortic dissection affects the aorta wall and is a surgical emergency with a low survival rate. This pathology occurs when an injury leads to a localized tear of the innermost layer of the aorta. It allows blood to flow between the layers of the aortic wall, forcing the layers apart and creating a false lumen. Endovascular treatment seeks to obliterate the entrances to the false lumen with a covered stent. There are very few studies on the postoperative demonstration of blood flow phenomena in the aortic dissection endovascular treatment. It is crucial to study the hemodynamics of blood in the aorta after an intervention because the new geometrical configuration of the aorta with a stent leads to modifications in blood flow. For the surgeons, the procedure can only be performed empirically, using MRI-4D images to view the postoperative flow of the patient’s blood in the aorta with the stent.
This paper aims to present a numerical tool developed from the open-source software FOAM- Extend®, allowing for multiphysics numerical simulations. Using MRI data, a bio-faithful model of the patient-specific case was built. Numerical simulations were performed to predict preoperative and postoperative (endovascular treatment) hemodynamics. The modifications of the flow in the aorta were analyzed focusing on the postoperative perfusions. The results were compared with the corresponding MRI data and have a good qualitative agreement. Biomarkers are calculated to localize possible zones of post-operative pathological developments and recommendations may be suggested to the surgeons.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001150 Cite this Article Read Full Article PDF

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26. Erratum in: Circulation. 2022 Sep 6;146(10):e141. PMID: 35078371.
  2. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022 Dec 20;80(25):2361-2371. doi: 10.1016/j.jacc.2022.11.005. Epub 2022 Nov 9. PMID: 36368511.
  3. Myrmel T, Larsen M, Bartnes K. The International Registry of Acute Aortic Dissections (IRAD) - experiences from the first 20 years. Scand Cardiovasc J. 2016 Oct-Dec;50(5-6):329-333. doi: 10.1080/14017431.2016.1240829. Epub 2016 Nov 2. PMID: 27806642.
  4. Levy D, Goyal A, Grigorova Y, Farci F, Le JK. Aortic Dissection. 2022 Dec 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 28722992.
  5. Sen I, Erben YM, Franco-Mesa C, DeMartino RR. Epidemiology of aortic dissection. Semin Vasc Surg. 2021 Mar;34(1):10-17. doi: 10.1053/j.semvascsurg.2021.02.003. Epub 2021 Feb 5. PMID: 33757630.
  6. Lombardi JV, Hughes GC, Appoo JJ, Bavaria JE, Beck AW, Cambria RP, Charlton-Ouw K, Eslami MH, Kim KM, Leshnower BG, Maldonado T, Reece TB, Wang GJ. Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS) reporting standards for type B aortic dissections. J Vasc Surg. 2020 Mar;71(3):723-747. doi: 10.1016/j.jvs.2019.11.013. Epub 2020 Jan 27. PMID: 32001058.
  7. Wik: https://en.wikipedia.org/wiki/Aortic_dissection (image: J.Heuser©)
  8. Murillo H, Molvin L, Chin AS, Fleischmann D. Aortic Dissection and Other Acute Aortic Syndromes: Diagnostic Imaging Findings from Acute to Chronic Longitudinal Progression. Radiographics. 2021 Mar-Apr;41(2):425-446. doi: 10.1148/rg.2021200138. PMID: 33646901.
  9. Uchida T, Sadahiro M. Thoracic Endovascular Aortic Repair for Acute Aortic Dissection. Ann Vasc Dis. 2018 Dec 25;11(4):464-472. doi: 10.3400/avd.ra.18-00127. PMID: 30637000; PMCID: PMC6326065.
  10. Cosset B, Boussel L, Davila Serrano E, Millon A, Douek P, Farhat F, Sigovan M. Hemodynamic Changes Before and After Endovascular Treatment of Type B Aortic Dissection by 4D Flow MRI. Front Cardiovasc Med. 2022 May 25;9:873144. doi: 10.3389/fcvm.2022.873144. PMID: 35694668; PMCID: PMC9174570.
  11. Ten Bosch JA, Rouwet EV, Peters CT, Jansen L, Verhagen HJ, Prins MH, Teijink JA. Contrast-enhanced ultrasound versus computed tomographic angiography for surveillance of endovascular abdominal aortic aneurysm repair. J Vasc Interv Radiol. 2010 May;21(5):638-43. doi: 10.1016/j.jvir.2010.01.032. Epub 2010 Apr 2. PMID: 20363153.
  12. Zhu Y, Mirsadraee S, Rosendahl U, Pepper J, Xu XY. Fluid-Structure Interaction Simulations of Repaired Type A Aortic Dissection: a Comprehensive Comparison With Rigid Wall Models. Front Physiol. 2022 Jun 14;13:913457. doi: 10.3389/fphys.2022.913457. PMID: 35774287; PMCID: PMC9237394.
  13. Dillon-Murphy D, Noorani A, Nordsletten D, Figueroa CA. Multi-modality image-based computational analysis of haemodynamics in aortic dissection. Biomech Model Mechanobiol. 2016 Aug;15(4):857-76. doi: 10.1007/s10237-015-0729-2. Epub 2015 Sep 28. PMID: 26416312; PMCID: PMC4945697.
  14. Pan W, Kulisa P, Escriva X. Computer aided surgery: Application to aortic dissection. Annals of Vascular Medicine & Research. 2020; 7(5):1120.
  15. Robertson AM, Sequiera A, Owens RG. Rheological models for blood. Cardiovascular Mathematics. 2009; 1. Chap. 6 Formaggia L, Quarteroni A, Veneziana A Eds.
  16. Walker AM, Johnston CR, Rival DE. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann Biomed Eng. 2014 Jan;42(1):97-109. doi: 10.1007/s10439-013-0893-4. Epub 2013 Aug 23. PMID: 23975383.
  17. Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol. 1992 Dec;263(6 Pt 2):H1770-8. doi: 10.1152/ajpheart.1992.263.6.H1770. PMID: 1481902.
  18. Berger SA, Jou LD. Flow in stenotic vessels. Annual Rev Fluid Mech. 2000; 32: 347.
  19. Moravia A, Simoëns S, El Hajem M, Bou-Saïd B, Kulisa P, Della-Schiava N, Lermusiaux P. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid. J Biomech. 2022 Jan;130:110899. doi: 10.1016/j.jbiomech.2021.110899. Epub 2021 Dec 7. PMID: 34923186.
  20. Yilmaz F, Gundogdu MY. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust Rheol J. 2008; 20(4):197.
  21. Ku DN. Blood Flow in Arteries. Annu Rev Fluid Mech. 1997; 29: 399-434.
  22. Nichols W, O’Rourke M, Vlachopoulos C. McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 6th Ed: Hodder Arnold 2011.
  23. Moore WS. Vascular and endovascular surgery: A comprehensive review. Elsevier Ed, 2012.
  24. Ahmed SA, Giddens DP. Pulsatile poststenotic flow studies with laser Doppler anemometry. J Biomech. 1984;17(9):695-705. doi: 10.1016/0021-9290(84)90123-4. PMID: 6238968.
  25. Seta F, Cohen RA. The endothelium: paracrine mediator of aortic dissection. Circulation. 2014 Jun 24;129(25):2629-32. doi: 10.1161/CIRCULATIONAHA.114.010609. Epub 2014 May 7. PMID: 24807873; PMCID: PMC4100940.
  26. Osswald A, Karmonik C, Anderson JR, Rengier F, Karck M, Engelke J, Kallenbach K, Kotelis D, Partovi S, Böckler D, Ruhparwar A. Elevated Wall Shear Stress in Aortic Type B Dissection May Relate to Retrograde Aortic Type A Dissection: A Computational Fluid Dynamics Pilot Study. Eur J Vasc Endovasc Surg. 2017 Sep;54(3):324-330. doi: 10.1016/j.ejvs.2017.06.012. Epub 2017 Jul 14. PMID: 28716447.
  27. Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, Higgins CB. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010 Apr;255(1):53-61. doi: 10.1148/radiol.09091437. PMID: 20308444.
  28. François CJ, Markl M, Schiebler ML, Niespodzany E, Landgraf BR, Schlensak C, Frydrychowicz A. Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. J Thorac Cardiovasc Surg. 2013 May;145(5):1359-66. doi: 10.1016/j.jtcvs.2012.07.019. Epub 2012 Jul 26. PMID: 22841438; PMCID: PMC3514600.
  29. Millon A, Bros S, Boussel L. A new carotid 3d mri sequence for stenosis measurement and plaque characterization at the same time. European Journal of Vascular and Endovascular Surgery. 2014; 48(3):342.

 

  1. Sherrah AG, Grieve SM, Jeremy RW, Bannon PG, Vallely MP, Puranik R. MRI in Chronic Aortic Dissection: A Systematic Review and Future Directions. Front Cardiovasc Med. 2015 Feb 19;2:5. doi: 10.3389/fcvm.2015.00005. PMID: 26664877; PMCID: PMC4671340.
  2. Sigovan M, Dyverfeldt P, Wrenn J, Tseng EE, Saloner D, Hope MD. Extended 3D approach for quantification of abnormal ascending aortic flow. Magn Reson Imaging. 2015 Jun;33(5):695-700. doi: 10.1016/j.mri.2015.02.020. Epub 2015 Feb 23. PMID: 25721998; PMCID: PMC4426228.
  3. Midulla M, Moreno R, Negre-Salvayre A, Beregi JP, Haulon S, Loffroy R, Dake M, Rousseau H. Impact of Thoracic Endografting on the Hemodynamics of the Native Aorta: Pre- and Postoperative Assessments of Wall Shear Stress and Vorticity Using Computational Fluid Dynamics. J Endovasc Ther. 2021 Feb;28(1):63-69. doi: 10.1177/1526602820959662. Epub 2020 Oct 7. PMID: 33025866.
  4. Sengupta S, Zhu Y, Hamady M, Xu XY. Evaluating the Haemodynamic Performance of Endografts for Complex Aortic Arch Repair. Bioengineering (Basel). 2022 Oct 18;9(10):573. doi: 10.3390/bioengineering9100573. PMID: 36290541; PMCID: PMC9598215.
  5. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011 Jan;91(1):327-87. doi: 10.1152/physrev.00047.2009. PMID: 21248169; PMCID: PMC3844671.
  6. Bassiouny HS, Zarins CK, Kadowaki MH, Glagov S. Hemodynamic stress and experimental aortoiliac atherosclerosis. J Vasc Surg. 1994 Mar;19(3):426-34. doi: 10.1016/s0741-5214(94)70069-9. PMID: 8126855.
  7. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985 May-Jun;5(3):293-302. doi: 10.1161/01.atv.5.3.293. PMID: 3994585.
  8. Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cárdenes R, Larrabide I, Migliavacca F. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface. 2013 May 15;10(84):20130193. doi: 10.1098/rsif.2013.0193. PMID: 23676893; PMCID: PMC3673154.
  9. Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1916-22. doi: 10.1152/ajpheart.00897.2003. Epub 2004 Jan 8. PMID: 14715506.
  10. Hoi Y, Zhou YQ, Zhang X, Henkelman RM, Steinman DA. Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis. Ann Biomed Eng. 2011 May;39(5):1414-22. doi: 10.1007/s10439-011-0255-z. Epub 2011 Jan 29. PMID: 21279441.
  11. Xu H, Li Z, Dong H, Zhang Y, Wei J, Watton PN, Guo W, Chen D, Xiong J. Hemodynamic parameters that may predict false-lumen growth in type-B aortic dissection after endovascular repair: A preliminary study on long-term multiple follow-ups. Med Eng Phys. 2017 Dec;50:12-21. doi: 10.1016/j.medengphy.2017.08.011. Epub 2017 Sep 7. PMID: 28890304.
  12. Bonfanti M, Balabani S, Greenwood JP, Puppala S, Homer-Vanniasinkam S, Díaz-Zuccarini V. Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data. J R Soc Interface. 2017 Nov;14(136):20170632. doi: 10.1098/rsif.2017.0632. PMID: 29118115; PMCID: PMC5721167.
  13. Arthurs CJ, Xiao N, Moireau P, Schaeffter T, Figueroa CA. A flexible framework for sequential estimation of model parameters in computational hemodynamics. Adv Model Simul Eng Sci. 2020;7(1):48. doi: 10.1186/s40323-020-00186-x. Epub 2020 Dec 2. PMID: 33282681; PMCID: PMC7717067.
  14. Marrocco-Trischitta MM, Sturla F. Blood flow helical pattern in type III arch configuration as a potential risk factor for type B aortic dissection. Eur J Cardiothorac Surg. 2021 Dec 27;61(1):132-139. doi: 10.1093/ejcts/ezab307. PMID: 34374753.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?