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Abstract 

Atherosclerosis is an important promoter of cardiovascular disease potentiating myocardial 
infarction or stroke. Current demand in biomedical imaging necessitates noninvasive 
characterization of arterial changes responsible for transition of stable plaque into rupture-
prone vulnerable plaque. In vivo contrast enhanced magnetic resonance (MR) imaging (MRI) 
allows quantitative and functional monitoring of pathomorphological changes through signal 
diff erences induced by the contrast agent uptake in the diseased vessel wall, therefore it is the 
ideal modality toward this goal. However, studies have so far focused on the cellular targets of 
persisting infl ammation, leaving extracellular matrix (ECM) far behind. In this review, we portray 
ECM remodeling during atherosclerotic plaque progression by summarizing the state of the-art 
in MRI and current imaging targets. Finally, we aim to discuss glycosaminoglycans (GAGs) and 
their functional interactions, which might off er potential toward development of novel imaging 
probes for in vivo contrast-enhanced MRI of atherosclerosis. 

Introduction
Atherosclerosis is a systemic inϐlammatory disorder 

which affects majorly large and medium-sized arteries [1]. 
It is a promoter of cardiovascular disease (CVD) potentiating 
myocardial infarction or stroke [2]. Molecular imaging 
studies utilizing different modalities have resulted in better 
understanding of the disease mechanisms, however the 
gravity of the health and economic burden of CVD calls for 
improvements in the diagnosis [3-5]. Current demand in 
biomedical imaging entails in vivo detection of atherosclerotic 
plaques with quantitative or predictive value through 
identifying vessel wall alterations leading to rupture-prone 
vulnerable plaque [6].

Contrast-enhanced magnetic resonance (MR) imaging 
(MRI) is the ideal modality towards this goal [7]. It allows 
non-invasive discrimination of major pathomorphological 
changes in atherosclerotic plaque progression: lipid core, 
ϐibrous cap, calciϐications, intraplaque hemorrhage and acute 
thrombosis [8]. The use of gadolinium (Gd)-based contrast 
agents (CAs) on the clinical level and iron oxide nanoparticles 

(IONPs) in experimental studies have placed plaque biology 
ahead of luminal stenosis [8-12]. Coexisting with the lipid 
accumulation and retention, inϐlammatory mediators are 
currently extensively investigated by MRI, in which cellular 
components are the most attractive targets [13-17].

Although generally ignored in the ϐield of molecular 
imaging, considerable attention has recently been raised 
toward molecular imaging of the extracellular matrix (ECM) 
in the context of atherosclerosis [18]. Apart from being the 
major component of the atherosclerotic plaque ultrastructure, 
coordinate synthesis and turnover of the ECM is a characteristic 
feature of plaque instability [19]. ECM alterations during 
arterial remodeling in atherosclerotic plaque progression 
involve highly abundant molecular interactions, which exhibit 
importance toward unraveling new targets, thus developing 
novel imaging probes. 

Among ECM components, glycosaminoglycans (GAGs) 
are well known for their antigenic characteristics in drug 
development or tissue engineering [20,21]. Following reports 
on tissue deposition of Gd in nephrogenic systemic ϐibrosis 
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(NSF), a fatal disease observed in patients with end stage 
renal disease who had received Gd-based MR CAs, studies 
have demonstrated colocalization of elements including 
phosphorus or calcium [22,23]. Insoluble complex formation 
through transchelation of Gd by physiological anions such 
as glycosaminoglycans has been postulated as a plausible 
underlying mechanism [24,25].

In this review, we aim to explore potentials of GAGs for 
in vivo contrast-enhanced MR imaging of atherosclerosis 
with a deeper look into their features as information-loaded 
sensing molecules of the ECM. We will try to elucidate ECM 
remodeling during atherosclerotic plaque progression by 
examining distributions and dynamic alterations of GAGs. 
Finally, we will discuss functional characteristics of GAGs 
in molecular interactions, which could guide investigations 
aiming at developing novel targets to identify vessel wall 
alterations leading to rupture-prone vulnerable plaque.

Atherogenesis and imaging targets

Atherogenesis is the interplay of smooth muscle cells 
(SMCs), immune cells, ϐibroblasts and the ECM (Figure 1) [26]. 
The native endothelium maintains vascular homeostasis by 
the support of laminar shear stress within the arteries [27]. 
Altered ϐlow conditions where turbulent ϐlow dominates 
over laminar sheer stress transform the endothelium into 
permeable and leaky form resulting in its activation [28]. This 
accounts for early atherogenesis, which is characterized by 
the formation of neointima through low density lipoprotein 

(LDL) inϐlux and subsequent oxidative modiϐication [29]. 
Endothelial cell adhesion molecules (CAMs), transmigration 
of monocytes or lymphocytes through interactions with 
selectins or integrins and angiogenesis offer a range of 
imaging targets [30-32]. Among these, vascular cell adhesion 
molecule-1 (VCAM-1) and αvβ3-integrin have been extensively 
investigated [33,34]. Additionally, proinϐlammatory cytokines 
or chemokines including interleukin-1 (IL-1), monocyte 
chemotactic protein-1 (MCP-1) and tumor necrosis factor-α 
(TNF-α) are attractive imaging targets of early atherogenesis 
[35,36]. 

Arterial remodeling and increased vasa vasorum activity 
during plaque progression substantiate expression of early 
markers and expose diversity in target molecules [1-,37]. 
LDL inϐlux escalates transmigration of monocytes into the 
neointima, where they differentiate into mature macrophages. 
Macrophages are the major inϐlammatory elements of both 
early and late atherosclerotic lesions, thereby their phagocytic 
activity has so far been the most attractive target for contrast-
enhanced MRI [38,39]. Phagocytosis offers a unique strategy 
as it results in concentration of CAs. Macrophage uptake of 
IONPs in atherosclerotic plaques was reported for the ϐirst 
time in a rabbit model, which was followed by a multicenter 
phase III clinical trial documenting accumulation of IONPs 
around the inϐlamed regions of atherosclerotic plaques 
[40,41]. Shortly after, in an in vivo study on human ruptured 
and rupture-prone lesions, Kooi, et. al. reported substantial 
signal decrease 24 h after intravenous administration [42]. 

Besides phagocytosis, proteolysis as a cohort of SMCs, 
macrophages, mast cells and T-lymphocytes allows monitoring 
of ECM degradation and thinning of the collagen-rich ϐibrous 
cap [43,44]. Matrix metalloproteinases (MMPs), cathepsin 
or serine proteases, chymase, tryptase or stromelysin-1 are 
targeted to assess the susceptibility to rupture or thrombosis 
[45-47]. Finally, screening for upregulated vasa vasarum 
activity, late stage immune cell antigens, activated platelets, 
ϐibrin and apoptosis markers such as annexin-V are among 
major targets of imaging vulnerable plaques [48-50].

MR imaging of the extracellular matrix

ECM is a highly organized three-dimensional network of 
ϐiber forming and non-ϐiber forming molecules cross-linked 
into a biomechanically viscoelastic composition (Figure 
2) [51]. ECM components consist of collagen, elastin and 
ϐibrin, proteoglycans (PGs), glycosaminoglycans (GAGs) 
and glycoproteins such as ϐibronectin, vitronectin, laminin 
and tenascin [20,52]. Deposition and remodeling of the 
ECM are among the hallmarks of atherosclerosis [53]. Early 
atherosclerotic lesions are characterized by the deposition 
of molecules that create a loose matrix, also known as 
‘provisional matrix’ [54]. The major molecular composition of 
this proliferative phase consists of ϐibronectin, tenascin and 
thrombospondin [55]. ECM of fatty streaks in human atheroma 

Figure 1: Atherosclerotic plaque progression. The native endothelium maintains 
vascular homeostasis (A). Early atherogenesis is characterized by the formation 
of the neointima through lipid infl ux, monocyte transmigration and foam cells (B). 
Persisting infl ammation during atherosclerotic plaque progression leads to formation 
of lipid cores. Arterial remodeling results in increased vasa vasorum activity forming 
neovessels. In parallel, medial smooth muscle cells undergo phenotypic changes 
and migrate into the neointima. Here, they proliferate and produce new extracellular 
matrix molecules forming the fi brous cap. Tissue breakdown and thinning of the 
fi brous cap provoke erosion and renders the plaque vulnerable by inducing tears, 
intraplaque hemorrhage and thrombosis (C,D) [19,38].
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was shown to contain substantial level of ϐibronectin, which 
attracts ϐibrillogenesis and ϐibronectin isoforms for MR 
imaging of early angiogenesis [56,57]. 

Transformation of the provisional matrix to ϐibrous matrix 
happens upon upregulation of the ϐibrous ECM components 
[55]. Collagen is the principal constituent of this state with 
varying types and tissue distributions [58]. It’s relative 
abundance, major role in maintaining the structural integrity 
and participation in the key inϐlammatory reactions make it a 
valuable target [59-61]. Collagenous thickening of the ϐibrous 
cap, retention of oxidized LDL (ox-LDL) by binding to collagen 
type I, III, IV and V as well as its turnover by the MMP activity 
result in a large pool of imaging targets [62-66]. 

Elastin is the second most abundant ϐibrous constituent of 
the ECM, majorly found in the media of the healthy arterial 
wall [67]. Besides maintaining the structural integrity, it 
prevents LDL penetration by forming lamellar layers [68]. 
Degradation and fragmentation of elastin, thus its absence in 
the newly remodeled matrix lead to increased LDL retention 
[69]. Alterations between elastogenesis and the turnover 
empower it’s use in monitoring lesion progression and 
determining the propensity into the rupture-prone plaque 
[70,71]. Characterization and quantiϐication of the plaque 
burden by an elastin-targeting CA was reported promising for 
screening large human populations [72,73].

Fibrin, although less abundant then collagen and elastin, is 
another ϐibrous molecule especially overexpressed in the ECM 
of advanced plaques with erosions, which result in ϐissures 
reaching into the necrotic core and hemorrhage [74]. Fibrin-
rich ECM aggregation leads to activation of the coagulation 
cascades, and recruitment of proinϐlammatory cells [75,76]. 
Domain-based modular interactions and the procoagulant 
activity render ϐibrin an important target for the detection of 
high-risk plaques with subacute and acute indications [77-80]. 

Glycosaminoglycans 

GAGs are linear polysaccharides consisting of alternating 
disaccharide units of an amino sugar and uronic acid mostly 
found covalently attached to a core protein (Figure 3) [81]. 
They are a minor constituent of the healthy arterial wall, 
but their upregulation during lesion progression has been 
well documented [82,83]. Important types of GAGs in the 
vasculature are heparan sulfate (HS), heparin, chondroitin 
sulfate (CS), dermatan sulfate (DS) and hyaluronan (HA) [84]. 
GAGs differentiate from one another by their monomeric 
building blocks, position and conϐiguration of the glycosidic 
linkages, chain length, and by the degree and position 
of sulfation and epimerization [85]. All GAGs except HA 
are sulfated or epimerized at variable degrees, which are 
coordinated in a speciϐic manner [85]. The combinatorial 
biosynthetic process, chain elongation, and modiϐications give 
rise to an incredible structural diversity, imposing GAGs to be 
the most information-dense molecules in biology [86,87].

Immunohistochemical studies on atherosclerotic lesion 
progression have revealed distinct topography of GAGs with 
differences in spatial and temporal distribution [88]. Overall, 
CS/DS is known to increase, and HS is known to decrease [89-
91]. Early lesions with stable endothelium, contractile SMC 
phenotype and occasional macrophage content display GAG 
distribution restricted to the cellular areas, whereas advanced 
lesions characterized by dysfunctional endothelium, synthetic 
SMC phenotype and macrophage content display highly 
complex distribution [88,92,93]. 

GAGs play important roles in supporting the structural 
organization of the ECM, regulating viscoelasticity and tissue 
permeability, lipid metabolism, cell signaling, migration, and 
differentiation [94-96]. Some of their critical functions have 
been decoded through genetic studies, in which manipulations 

Figure 2: Extracellular matrix structure. Extracellular matrix is a highly organized 
three dimensional network of fi ber forming and non-fi ber forming molecules cross-
linked into a biomechanically viscoelastic composition [51]. It’s major components 
are collagen, elastin, fi brin, proteoglycans, glycosaminoglycans, glycoproteins 
such as fi bronectin, vitronectin, laminin and tenascin.

Figure 3: Illustration of glycosaminoglycan structure and interactions. 
Glycosaminoglycans are linear polysaccharides consisting of alternating disaccharide 
units of an amino sugar and uronic acid mostly found covalently attached to a core 
protein [81]. Glycosaminoglycan chains contribute to tertiary complex formation 
through establishing electrostatic bridges between nearby molecules and assist 
higher level interactions involving hydrophobic forces, hydrogen bonding or ionic 
interactions between proteins [99,100].
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of genes encoding their biosynthetic enzymes resulted with 
severe disruptions [97]. GAGs exert their functions through 
localization, stabilization, activation or inactivation of proteins 
(Figures 3,4) [98]. GAG chains contribute to complex formation 
through establishing electrostatic bridges and assist higher 
level interactions [99,100]. For instance, GAG-LDL complexes 
were reported to be internalized by macrophages easier 
than LDL alone [101]. Lipid retention happens upon initial 
electrostatic binding with CS/DS chains of the PGs secreted by 
vascular SMCs and is followed by hydrophobic self-association 
of the lipoprotein [102,103]. However, positively charged 
amino acids on the apolipoprotein B, and their interactions 
with the sulfate or carboxylate groups on the GAG chains are 
crucial for binding [104,105]. 

Versatile binding ability permits different GAGs to interact 
with the same protein or different proteins simultaneously 
(Figure 4) [85,106]. Platelet factor-4 (PF4) binding is good 
example for cooperative activity [107]. During coagulation, 
PF4 is released from the α-granules of activated platelets 
by the coordinated transfer from the CS to more sulfated 
polysaccharides [108]. PF4 binds to and neutralizes heparin 
upon which it modulates ϐibroblast growth factor-2 (FGF-2) 
activity [109]. Similarly, the interaction between PF4 and 
neutrophil cell surface CS constitutes an essential mechanism 
for modulation of immune response by GAGs serving as 
physiologically relevant receptors [110]. 

Finally, GAGs perform the highest afϐinity binding by 
inducing conformational changes and surface complementarity 
on the proteins, attributed to torsional angle changes in the 
backbone chains of GAGs [111,112]. HS-FGF and heparin-anti 
thrombin-III (AT-III) are the most well-known examples for 

such interactions. HS enhances FGF binding and oligomerization 
at its receptor owing to the presence of rare sulfation and 
epimerization patterns on at least tetrasaccharides [113,114]. 
AT-III is an inhibitor in the coagulation cascade, which 
binds to thrombin in 1:1 molar ratio [81]. Heparin forms 
a tight ternary complex with the AT-III through a speciϐic 
pentasaccharide consensus motif and accelerates the rate 
of thrombin inhibition [111,115]. A unique sequence having 
four anionic groups (two N- and two O-sulfates, 3-O-sulfation 
being critical) on the glucosamine residues has been shown 
to be crucial for the ionic contacts with the protein [116]. 
DS-heparin cofactor II interaction was also reported to take 
place through binding of a speciϐic DS hexasaccharide, which 
constitutes only 2% of hexasaccharides in DS, rendering it an 
important example for rare modiϐications on GAGs necessary 
for their functional roles [117,118]. 

GAGs as novel targets in contrast-enhanced MRI

Toward the goal of detecting atherosclerotic plaques 
at early stages, it is imperative to enhance the diagnostic 
value of existing approaches in characterizing the transition 
of stable plaque into vulnerable plaque [16]. In that regard, 
high spatial resolution-based investigations determining 
microdistribution of CAs in atherosclerotic plaques and their 
interactions with the ECM components would be beneϐicial 
[119]. Additionally, immunohistochemical investigations 
supporting existing MRI approaches should be reinforced 
by GAG immunostaining methods and complemented by 
elemental microscopy [120-122]. GAGs are a minor constituent 
of the healthy arterial wall but their rapid upregulation during 
lesion formation and progression along with their functional 
roles in major inϐlammatory processes highlight their potency 
in developing novel CAs that might offer advantages over 
existing MRI methods [82,83].

In summary, the contrast function of the agents 
administered arise from catalytically shortening the relaxation 
times of bulk water protons [123]. The polyelectrolyte nature 
of GAGs exposes them as the major charge hotspots in the ECM, 
making it suitable for exploring their properties in binding to 
and clustering CAs [124]. Also, lesion formation induces high 
expression of antigenic structures. These are almost always 
in the form of GAGs or glycoprotein conjugates [20]. Immune 
cells are often activated by these molecules and guided to the 
site of action through interactions of chemokines or cytokines 
with GAGs [125,126]. This applies to concentration of growth 
factors (GFs), enzymes or enzyme inhibitors as well [127,128]. 
Identifying types or compositions of GAG molecules in such 
interactions allow the mimicry of these by GAG-CA conjugates. 
Similarly, major pathomorphological changes during lesion 
progression involve GAGs, which can be tailored to purpose of 
imaging. Among those, interactions of CS/DS chains secreted 
by vascular SMCs with LDL molecules and hydrophobic self-
association might serve well for the development of novel 
liposome-based CAs [69]. Moreover, decorin is a PG-form of DS 

Figure 4: Schematic illustration of diff erent glycosaminoglycan interactions. 
Glycosaminoglycans localize, stabilize, activate or inactivate proteins [98]. Decorin is 
a proteoglycan form of dermatan sulfate, which binds to collagen (A). Heparin interacts 
with fi bronectin (B) [133]. Monocyte transmigration happen through interactions with 
the cell surface heparan sulfates on the endothelium and glycosaminoglycan low 
density lipoprotein complexes are more easily internalized by macrophages than 
lipoproteins alone (C) [101,127]. Glycosaminoglycans serve as storage reservoir 
for chemokines (D) and growth factors (F) [128]. They perform the highest affi  nity 
binding by inducing conformational changes and surface complementarity on 
the proteins [111,112]. Heparan sulfate-fi broblast growth factor and heparin anti 
thrombin III are the most well-known examples for such interactions (E).
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that binds to collagen, thereby might be engineered to monitor 
processes including thinning of the ϐibrous cap, erosions or 
calciϐications [93,129]. Notably, elastin assembly, elastin 
binding of ϐibronectin or coagulation cascades, which display 
versatile afϐinity binding ability of GAGs offer useful strategies 
for targeting approaches not only through traditional protein 
components, but also through GAGs [85,106,130]. 

Finally, sulfation holds the key for elucidating unfamiliar 
features of GAGs during atherosclerotic plaque progression 
[131]. Variations in type, position or degree of sulfation, which 
result in distinct domain formations with particular or even 
rare-type of modiϐications are the core factors underlying their 
functional interactions [132]. Thus, it is highly conceivable 
that better understanding of these features is promising 
toward unraveling new targets, and development of more 
sophisticated MR contrast agents.

Conclusion
In this review, we aimed to explore potentials of GAGs for 

vivo contrast-enhanced MR imaging of the ECM in the context of 
atherosclerosis. Diseases present qualitative and quantitative 
changes in the ECM, in which GAGs take on diverse functional 
roles. ECM has been receiving attention as a potential area 
of research in molecular imaging. In parallel, technological 
advances in glycobiology have been increasing, among 
which chemical synthesis of oligosaccharides with desired 
modiϐications holds great potential for future investigations. 
Differential spatial or temporal distribution of GAGs in the 
vasculature, their rapid upregulation upon atherosclerotic 
plaque formation and functional roles in molecular interactions 
arising from versatile binding characteristics praise them 
as potent candidates toward development of novel imaging 
probes for in vivo contrast-enhanced MRI of atherosclerosis.
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