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Abstract

Continuous noninvasive cuffl  ess blood pressure (BP) monitoring is essential for early 
detection and treatment of hypertension. In this paper, we provide an overview of the recent 
advancements in cuffl  ess BP sensors. These include contact wearable sensors such as 
electrocardiography (ECG), photoplethysmography (PPG), contact non-wearable sensors 
such as ballistocardiography (BCG), and contactless sensors such as video plethysmography 
(VPG). These sensors employ diff erent measuring mechanisms such as pulse arrival time (PAT), 
pulse transit time (PTT), and pulse wave analysis (PWA) to estimate BP. However, challenges 
exist in the eff ective use and interpretation of signal features to obtain clinically reliable BP 
measurements. The correlations between signal features and BP are obtained by mechanism-
driven models which use physiological principles to identify mathematical correlations, and data-
driven models which use machine learning algorithms to analyze observational data to identify 
multidimensional correlations. On the one hand, applying mechanism-driven models to non-
linear scenarios and incomplete or noisy data is challenging On the other hand, data-driven 
models require a large amount of data in order to prevent physically inconsistent predictions, 
resulting in poor generalization. From this perspective, this paper proposes to combine the 
strengths of mechanism-driven and data-driven approaches to obtain a more comprehensive 
approach, the physiology-informed machine-learning approach, with the goal of enhancing the 
accuracy, interpretability, and scalability of continuous cuffl  ess BP monitoring. This holds promise 
for personalized clinical applications and the advancement of hypertension management.

have this condition [5]. In the United States, nearly one out 
of two adults, roughly 108 million, have hypertension, and 
only one in four adults have it under control. Each year, 
high BP is responsible for about 500,000 deaths and costs 
the nation up to almost 200 million dollars [6]. Therefore, it 
is essential to provide an early diagnosis to intervene with 
therapies to reduce high BP and avoid the risk of further 
complications before microvascular and macrovascular 
damage has occurred [7]. In the current clinical practice, BP is 
measured by either invasive intra-arterial catheterization or a 

Introduction
Blood Pressure (BP), one of the most important metrics 

in health monitoring, represents the response of the 
cardiovascular system to provide adequate blood perfusion to 
tissues [1,2]. High BP, known as hypertension, is the leading 
cause of death worldwide and a critical factor that increases 
cardiovascular complications as well as brain, kidney, and 
ocular damage [2-4]. Globally, approximately 1.28 billion 
adults between 30 and 79 years of age have hypertension 
with an estimated 46% of this population unaware that they 
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noninvasive cuff-based method [8]. The ϐirst method requires 
the introduction of a catheter inside the artery; this provides 
reliable continuous BP monitoring. However, due to its high 
invasiveness, this method can be applied only in critical care 
settings such as intensive care units [8]. The second method 
is based on an inϐlatable cuff wrapped around the arm that 
occludes the brachial artery; the pressure wave oscillations 
in the vessels generated by the gradual reduction of the 
cuff pressure are recorded. Health care providers can also 
listen to Korotkoff sounds once the cuff pressure is released 
[4,9]. This auscultation method has not changed too much 
since Scipione Riva-Rocci introduced it in 1896. Although 
this method provides non-invasive reliable measurements, 
it cannot describe the nature of BP dynamics over time and 
the cuff itself is often the cause of discomfort and sometimes 
pain, especially in hypertensive patients [10]. Therefore, 
despite the high importance of continuous monitoring of BP to 
provide early diagnosis and treatment of hypertension, there 
is still the need for a method that can provide continuous 
noninvasive cufϐless BP monitoring.

 Current advances in the BP monitoring fi eld

In the last few decades, research interest is increasing 
in developing continuous BP measurements by means of 
cufϐless devices [4,8]. Contact sensors require being in direct 
contact to provide measurements; they can be wearable and 
non-wearable [2,3]. Examples of wearable sensors include 
electrocardiography (ECG) and photoplethysmography 
(PPG). ECG captures the electrical activity at each heartbeat 
by electrodes attached to the chest and limbs. PPG measures 
the waveforms of pulsatile arterial blood volume by using 
light to illuminate a side of a tissue volume, then receive the 
reϐlected light on the same side or transmitted light on the 
other side [9,11]. Ballistocardiography (BCG) is an example of 
a non-wearable sensor. BCG records the repetitive motion of 
the center of mass of the human body as blood moves from 
the heart to the circulatory system, capturing the mechanical 
and hemodynamic properties of the cardiovascular system as 
a whole. BCG can be recorded by different sensing modalities 
such as weighing scales, accelerometers, and hydraulic bed 
sensors [12-15]. Contactless sensors, such as the hydraulic 
bed sensor, can provide measurements without being 
worn or being in direct contact with the subject [15]. Video 
Plethysmography (VPG) and Doppler radar are other types 
of contactless sensors. VPG captures the light absorbed and 
then reϐlected by the skin surface, the intensity of the light 
changes as the hemoglobin absorbs light. The video cameras 
capture the characteristics peak in the green light frequency, 
which decreases when there is an increase in bloodstream 
hemoglobin due to the pumping of the heart. VPG can be 
recorded on the forehead, palms, and cheeks [16]. Radar 
generates electromagnetic waves and an antenna records 
reϐlected waves by using the Doppler effect. The movement 
captured on the surface of the sternum is the vasomotion 
caused by the pulse wave that moves through the aortic artery 
[17,18]. 

BP sensors also differ in measuring mechanisms. Pulse 
Arrival Time (PAT) and pulse transit time (PTT) are two 
widespread techniques [3,9]. PAT is deϐined as the time 
interval between the heart’s electrical activity acquired by 
ECG and a peripheral pulse detected lower down the arterial 
tree, acquired for example by a PPG sensor. PTT is deϐined as 
the time delay between two waveforms acquired in different 
parts of the body and typically relies on two mechanical 
measurements of pulse wave activity, such as BCG-PPG time 
delay [3,12,13]. Despite these differences, both approaches 
aim to precisely compute pulse wave velocity (PWV), which 
deϐines the velocity at which pressure waves propagate and 
it has proved to be closely associated with BP measurements 
[8,9]. Another measuring mechanism is based on pulse wave 
analysis (PWA), a technique that analyzes the morphology of 
the pressure pulse wave, with the aim of extracting crucial 
features and information that can indirectly assess the BP [3] 
PWA has been used in the applanation tonometry method, 
which involves lightly pressing a pressure sensor against the 
artery so that the artery is ϐlattened between the sensor and 
the supporting structures [2,3]. This method is well suited for 
single snapshot measurements of BP, but its measurements 
are affected by sensor positioning. The method also requires a 
trained operator and it remains impractical for continuous and 
unsupervised measurements of BP [10]. PWA is also applied by 
using optical measurements via PPG to measure the variation 
of the local blood volume changes in the tissues. This method 
does not need an operator and is easy to place. However, the 
analysis of the PPG pulse wave is more challenging because it 
involves an indirect observation of the central hemodynamic 
variables and because the underlying mechanisms generating 
the PPG signal are only partially known [9,19]. Many studies 
recently started to employ machine learning algorithms with 
the goal of extracting meaningful features from these signals 
and modeling the relationship between the learned features 
and BP. The aim is to minimize the error between the predicted 
value and BP reference. However, this method requires a large 
amount of data to train the machine learning model [4,9]. So, 
why is a reliable continuous cufϐless BP monitoring method 
not available yet? 

Challenges of mechanism-driven and data-driven 
methods for waveform analysis

Despite the great progress in the ϐield of cufϐless BP 
monitoring and the many different sensing modalities adopted 
for the measurement, the effective use and interpretation of 
signal features remain quite challenging. The interpretation 
of signals is possible through BP estimation models that 
have the task to provide standardized and reproducible 
measurements of BP, ensuring consistency across devices 
and sensing modalities. The models have the goal to help 
healthcare providers to monitor and manage changes in BP 
due to changes in cardiovascular health and to evaluate the 
impact of interventions and the efϐicacy of treatments. Two 
main approaches have been proposed for signal feature 
identiϐication and extraction.
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One approach is mechanism-driven modeling, where 
physics-based mathematical models are used to interpret the 
signal based on fundamental principles of physiology [20]. 
The other approach is data-driven, where large amounts of 
multi-ϐidelity observational data are analyzed via machine 
learning and artiϐicial intelligence techniques to identify 
multidimensional correlations between signal features and 
BP [4,21]. 

There are four major differences between the mechanism-
driven and data-driven models, in terms of interpretability, 
scalability to clinical application, generalization, and data 
demand and ϐitting.

1) Interpretability: Mechanism-driven models have 
the ability to translate physiology principles into quantiϐiable 
metrics by using mathematical modeling. Thus, the model 
predictions are clearly interpretable in terms of fundamental 
physiology mechanisms. Conversely, data-driven models are 
based on data, not principles. The learning is driven by a well-
deϐined objective function, but the process is often perceived 
as a black box, and it remains challenging to explain how 
results have been achieved [9]. 

2) Scalability to clinical applications: When data and 
boundary conditions are noisy and incomplete, mechanism-
driven modeling becomes very challenging. In these situations, 
data-driven approaches can be helpful in identifying latent 
states that cannot be taken into account directly in mechanism-
driven models [9]. 

3) Generalization: Data-driven models are achieved by 
using a speciϐic dataset with the goal of solving a very speciϐic 
problem, which makes it challenging to generalize to different 
conditions or across different sensors or populations. Data-
driven models may ϐit observations quite well, but predictions 
may be physically inconsistent, which can result in poor 
generalization performance [22]. Mechanism-driven models 
are based on the principles of physiology, and can provide a 
generalized description of the problem that holds beyond a 
speciϐic population subset [20].

4) Data demand and itting: Mechanism-driven models 
map BP indicators to BP via a mathematical model based on 
some assumptions that do not require a huge amount of data. 
On the other hand, data-driven models require an enormous 
amount of data to train and make the network learn relevant 
features. Small datasets lead to the data ϐitting issue, which has 
an effect on the performance of machine learning algorithms. 
These algorithms provide good performance when the 
training error is kept to a minimum and the training and test 
distributions are similar. However, overϐitting to the training 
data can happen and produce substandard results on a test set 
when the training dataset is not adequately representative of 
the overall population. In contrast, under ϐitting may occur if 
the training dataset is too small, which can lead to insufϐicient 
error reduction on the training dataset and bad performance 
on the test set [22]. 

In summary, mechanism-driven models have the 
advantage to translate physiology principles into quantiϐiable 
metrics by using mathematical modeling, though applications 
where data and boundary conditions are missing and noisy, 
become computationally challenging. On the other side, data-
driven models can achieve automatic feature extraction from 
a dataset of waveforms used as training sets without the need 
to use any expert knowledge of the physiological mechanisms 
that generate the waveforms. A data-driven model may ϐit 
observations very well, but predictions may be physically 
inconsistent, resulting in poor generalization performance. 
Therefore, to leverage their strengths and overcome their 
shortcomings, there is the need to combine mechanism-
driven models and data-driven models to achieve both 
interpretability and scalability.

P hysiology as a common denominator across 
technology and data: physiology-informed machine 
learning approach

Mechanism-driven models are based on well-deϐined 
physiology derived from clinical data without the need to 
access large amounts of data. For example, the mechanism-
driven model of cardiovascular physiology proposed by 
Guidoboni, et al. [19] allows prediction of how changes in 
cardiac function will manifest in the Ballistocardiogram (BCG) 
signal, which represents the acceleration of blood distribution 
through the body at each heartbeat [22]. Speciϐically, a 
reduction in left ventricular contractility leads to a change in 
physiological markers deϐined as a reduction in BCG amplitude 
and an increase in the time delay between the R-peak in 
the electrocardiogram and the systolic peak in the BCG. The 
predicted changes in these markers have been validated 
on three swine during pre-and post-myocardial infarction 
conditions [14]. This ϐinding advances the BCG technique as an 
effective method for non-invasive cardiovascular monitoring 
even in patients with critical conditions such as those 
hospitalized in the surgical intensive care unit [23]. Moreover, 
the ability of the BCG-based sensors to be non-wearable and 
embedded in the furniture we already use at home, such as 
beds and armchairs, does not require much compliance from 
subjects. This can provide great beneϐits to continuous BP 
monitoring with enormous healthcare implications, such as 
overnight or in-home BP monitoring [15,24]. However, in 
order for physiological variables estimated by a model to be 
clinically helpful, it is necessary to assess their correlation 
with relevant clinical outcomes. This is where data-driven 
approaches, for example, based on artiϐicial intelligence and 
machine learning, can help connect theory with data. The 
two approaches were combined in [25], where a mechanism-
driven cardiovascular model was used to estimate the BP of 
subjects based on their BCG waveforms, while an evolutionary 
computation algorithm was used to personalize the model 
parameters to each speciϐic subject. This provided a means 
to estimate cardiovascular parameters, such as ventricular 
contractility and stiffness, whose direct measurement 
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requires highly invasive techniques (catheterization). In 
other words, mechanism-driven models have the ability 
to identify meaningful markers to relate to blood pressure 
and make them available across sensing modalities, while 
data-driven models can combine these markers with other 
multidimensional information to personalize and evaluate 
the condition of each individual patient. In that study, 
machine learning is embedded in the mathematical model 
to personalize the model to each subject. In addition, physics 
can be incorporated into machine learning algorithms to 
address the requirement of huge datasets. Large amounts of 
data are typically required for machine learning algorithms 
to successfully train the network. High-quality data, like BP 
measures, may not be enough for standard machine learning 
training in real-world situations. In these circumstances, 
physics-informed learning provides a signiϐicant beneϐit by 
demonstrating great generalization potential despite the 
dearth of available data. High-dimensional machine learning 
models can be effectively limited to a lower-dimensional 
manifold by including or upholding the laws of physics, which 
enables training on smaller datasets. The network architecture 
can incorporate physics and use penalty restrictions to direct 
the computational model’s learning process. Therefore, 
combining mechanism-driven and data-driven models have 
more potential than using them separately.

Co nclusions and perspectives
In this paper, we summarized the current advance in 

the research ϐield of BP monitoring where those using 
just mechanism-driven models or just data-driven models 
have been proven to be not enough to provide reliable 
cufϐless BP monitoring. Mechanism-driven modeling can 
provide empirical, physical, and mathematical insights into 
the mechanisms underlying BP genesis and ϐluctuations. 
Incorporating this approach into the design of sensors and 
the analysis of data can provide the opportunity to enhance 
the performance of learning algorithms and personalize BP 
monitoring for each person. Such personalized monitoring 
can promote early diagnosis and treatment of hypertension. 

In conclusion, mechanism-driven modeling and data-
driven modeling can help to overcome each other’s challenges 
and to increase their own potential to provide continuous 
cufϐless BP monitoring independent of the sensing modality 
used. 
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