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Summary

Background and aim: Congestive heart failure is a prevalent and serious condition that poses signifi cant 
challenges in the emergency department setting. Prompt and accurate management of congestive heart failure 
patients is crucial for improving outcomes and optimizing resource utilization. This study aims to address these 
challenges by developing a machine learning algorithm and comparing it to a traditional logistic regression 
model that can assist in the triage, resource allocation, and long-term prognostication of congestive heart 
failure patients.

Methods: In this investigation, we used the MIMIC-III database, a publicly accessible resource containing 
patient data from ICU settings. Traditional logistic regression, along with the robust XGBoost and random 
forest algorithms, was harnessed to construct predictive models. These models were built using a range of 
pretreatment clinical variables. To pinpoint the most pertinent features, we carried out a univariate analysis. 
Ensuring robust performance and broad applicability, we adopted a nested cross-validation approach. This 
method enhances the precision and validation of our models by implementing multiple cross-validation 
iterations.

Results: The performance of machine learning algorithms was assessed using the area under the 
receiver operating characteristic curve (AUC). Notably, the random forest algorithm, despite having lower 
performance among the machine learning models still demonstrated signifi cantly higher AUC than traditional 
logistic regression. The AUC for the XGBoost was 0.99, random forest 0.98, while traditional logistic regression 
was 0.57. The most important pretreatment variables associated with congestive heart failure include total 
bilirubin, creatine kinase, international normalized ratio (INR), sodium, age, creatinine, potassium, gender, 
alkaline phosphatase, and platelets.

Conclusion: Machine learning techniques utilizing multiple pretreatment clinical variables outperform 
traditional logistic regression in aiding the triage, resource allocation, and long-term prognostication of 
congestive heart failure patients in the intensive care unit setting using MIMIC III data.

have stabilized, the prevalence continues to rise as more 
patients receive therapy. Unfortunately, this increase in 
prevalence has not led to an improvement in the quality of life 
for patients with heart failure or a reduction in hospitalizations 
[2]. Heart failure HF is a common cause of hospitalization, 
particularly among older patients, and presents challenges in 
diagnosis, management, organization of health services, and 

Introduction
Heart failure (HF) is a complex and life-threatening 

syndrome associated with signiϐicant morbidity, mortality, 
and high costs. According to the Global Health Data Exchange 
registry, the current worldwide prevalence of congestive 
heart failure (CHF) stands at around 64.34 million cases [1]. 
However, while the incidence rate of heart failure seems to 
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risk prediction [3,4]. It is also one of the most costly healthcare 
conditions to manage in high-income countries. The use 
of registries and institutional databases to aggregate large 
amounts of data from diagnostic tests, invasive procedures, 
and therapies can provide valuable insights into healthcare 
utilization, quality and cost of care, and disease progression. 
However, the size, complexity, and dynamic nature of these 
“big data” can present challenges for traditional analytical 
methods to effectively analyze and interpret the data [4,5].

Machine learning (ML) is a branch of artiϐicial intelligence 
that allows machines to learn and acquire knowledge from 
raw data without explicit programming. It utilizes computer 
algorithms to extract patterns and make predictions or 
classiϐications. Unlike traditional statistical methods, ML can 
handle large and complex datasets with a low signal-to-noise 
ratio. ML algorithms require fewer assumptions and can 
uncover novel relationships in the data [4,6,7]. ML can address 
the challenges in delivering the right care to the right patient 
in HF. Diagnostic uncertainty, treatment variation, and safety 
response can be attributed to the suboptimal generalizability 
of clinical trial results, complexity in risk stratiϐication, and 
limited integration of information at the point of care [8]. 

Machine Learning offers important advantages over 
traditional human-derived models in bridging these gaps in 
HF. It can improve generalizability by leveraging large and 
diverse datasets, enabling the development of predictive 
models that encompass a broader range of patients and clinical 
scenarios. ML algorithms can analyze and extract patterns 
from extensive datasets, allowing for more accurate risk 
stratiϐication and personalized treatment recommendations 
in HF. By considering multiple variables and interactions 
simultaneously, ML models can identify novel relationships 
and factors that impact patient outcomes [9]. Machine learning 
has the potential to enhance the integration of information 
at the point of care by providing real-time decision support 
and incorporating patient-speciϐic data into treatment plans. 
Furthermore, ML can address the limitations of traditional 
clinical trials in the context of heart failure (HF). Clinical trials 
typically impose stringent inclusion and exclusion criteria, 
leading to limited generalizability in real-world populations. 
By utilizing data from observational registries, ML can 
compare patient characteristics and outcomes between 
trial participants and real-world patients, thereby providing 
insights into the external validity of trial results. ML also 
enables the identiϐication of patients who would have met the 
eligibility criteria for trial enrollment based on registry data, 
facilitating a better understanding of the applicability of trial 
ϐindings to broader patient populations [3,8,10,11]. The goal 
of this study is to develop a machine learning algorithm that 
can assist in the triage, resource allocation, and long-term 
prognostication of congestive heart failure patients in the 
intensive care unit (ICU) using pretreatment features and to 
compare our method with traditional logistic regression. 

Methods
Patient population

This study utilized a retrospective cohort design. The data 
used in this study was obtained from an openly available 
database MIMIC III, speciϐically from the Beth Israel Deaconess 
Medical Center in Boston, USA [12]. The database contained 
de-identiϐied information on a total of 46,520 patients and 
58,976 admissions. These numbers show that the admissions 
are more than the total number of patients because some 
patients have more than one admission. Various types of data 
were collected, including demographics, admission notes, 
International Classiϐication of Diseases-9th revision (ICD-9) 
diagnoses, laboratory tests, medications, procedures, ϐluid 
balance, discharge summaries, vital sign measurements, 
radiology reports, and survival data. To establish a focused 
cohort, certain exclusion criteria were applied. Patients with 
diagnoses other than congestive heart failure (CHF), patients 
who were not admitted through the emergency department, 
and patients who did not meet the speciϐic criteria were 
excluded. Ultimately, a total of 9,685 patients who were 
admitted through the emergency department were included 
in the study. Among them, 666 patients (7%) were diagnosed 
with CHF, while 9,019 patients (93%) did not have CHF, 
Figure 1.

Outcome

The case group encompassed individuals who presented to 
the emergency department (ED) with a conϐirmed diagnosis of 
CHF. These patients exhibited symptoms and clinical ϐindings 
consistent with CHF. The CHF diagnoses were established 
following standard clinical criteria using the ICD9 code. The 
control group was comprised of patients without a diagnosis 

Figure 1: Flow chart of patient selection.
ICU: Intensive Care Unit; CHF: Congestive Heart Failure
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of congestive heart failure. These individuals visited the ED 
during the same period as the case group. The absence of CHF 
in control patients was validated by reviewing their medical 
records and excluding cases with any documented history of 
CHF.

Pretreatment variables and data preprocessing 

After performing univariate analysis, a total of 19 
pretreatment variables were selected for inclusion in the 
machine learning (ML) models. These variables encompassed 
various aspects such as demographic information, liver 
function markers, cardiac enzymes, complete blood count 
parameters, serum electrolyte levels, patient length of stay 
(LoS), and other test measurements. To preprocess the data, 
categorical variables were converted into numerical values 
using one-hot encoding. For continuous variables with 
missing values, imputation was performed using the median 
value when the distribution of the variable was found to be 
non-normal [13]. The normality of the data distributions was 
assessed using the Shapiro-Wilk test [14], which examines the 
assumption of normality. 

Missing data

Fortunately, our dataset presented no missing values 
in the categorical variables. Nevertheless, in the case of 
continuous variables where more than 25% of data was 
absent, we adopted a strategy to enhance the trustworthiness 
and effectiveness of our Machine Learning models. These 
variables were pruned from the subsequent analysis.

Regarding the treatment of missing data in variables less 
than 25%, we applied an imputation technique [13,15,16] 
using R programming software, speciϐically using the median 
value. In this method, for each variable with missing entries, 
we substituted those missing values with the median value of 
that variable. The median is selected because it represents the 
middle value in a dataset, making it a robust choice in cases 
where data may be skewed or contain outliers. This approach 
helped us maintain the integrity and completeness of our 
dataset, enabling more reliable model training and analysis.

Traditional logistic regression model and feature 
selection 

In our study, we opted to include the traditional logistic 
regression (LR) model [17] as a benchmark for evaluating 
the performance of machine learning models in assisting the 
triage, resource allocation, and prognostication of congestive 
heart failure (CHF) patients in the emergency department 
(ED). To identify the signiϐicant variables for our analysis, we 
initially conducted univariate logistic regression analysis. This 
analysis helped us determine which variables had a signiϐicant 
impact on the outcome. The most important variables were 
determined by their standardized correlation coefϐicients [18] 
and were selected and entered into the multivariate logistic 
regression model. This comprehensive model allowed us to 

assess the combined inϐluence of multiple variables on the 
prediction. 

Machine learning models

Machine learning, a subset of artiϐicial intelligence (AI), 
enables the extraction of valuable insights from data [19]. 
The process begins by selecting an algorithm, and model 
parameters which are initially assigned randomly. The model 
is then trained using a subset portion of the data to establish its 
patterns and relationships. Through iterative steps, the model 
gradually adjusts its trainable parameters to optimize its 
performance. Once the training phase is completed, all model 
parameters are ϐixed. To assess the model’s performance, a 
separate test dataset, distinct from the training data, was used.

In this study, we employed extreme gradient boosting 
(XGBoost) [20] and random forest (RF) model [21] and 
compared their performance to traditional logistic regression 
model [17].

XGBoost (Extreme gradient boosting)

XGBoost is a powerful and efϐicient gradient-boosting 
algorithm known for its high performance in both structured 
and tabular data. Some key features and characteristics of 
XGBoost include: XGBoost is based on the gradient boosting 
framework, which builds an ensemble of decision trees 
sequentially, each tree correcting errors made by the previous 
ones. It incorporates L1 (Lasso) and L2 (Ridge) regularization 
techniques to prevent overϐitting, making it robust against 
noisy data. It uses a technique called “tree pruning” to remove 
branches that provide little to no additional predictive power, 
improving model efϐiciency. XGBoost can be efϐiciently 
parallelized, making it faster and more suitable for large 
datasets. In addition, it provides feature importance scores, 
helping you identify which features have the most impact on 
predictions [22].

Random forest

Random Forest is an ensemble learning method that uses 
multiple decision trees to make predictions. Random Forest 
builds a collection of decision trees, where each tree is trained 
on a random subset of the data and a random subset of the 
features. It uses a technique called bagging to reduce overϐitting. 
Bagging involves creating multiple subsets of the training data 
through resampling, and each tree is trained on one of these 
subsets. Random Forest can also provide feature importance 
scores, allowing you to understand the contribution of each 
feature to the model’s predictions. Random Forest is robust to 
outliers and noisy data, making it a good choice when dealing 
with real-world datasets. Finally, like XGBoost, Random Forest 
can be easily parallelized, making it suitable for large datasets 
and distributed computing environments [23].

Traditional logistic regression

Traditional logistic regression is a statistical method used 
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for binary classiϐication tasks, where the outcome variable 
has only two possible classes or categories (e.g., Yes/No, 1/0, 
True/False) [24]. Logistic regression models the relationship 
between a binary dependent variable (target) and one or more 
independent variables (predictors) using the logistic function 
[25]. The logistic function, also known as the sigmoid function, 
transforms linear combinations of predictors into probabilities. 
Unlike linear regression, which predicts continuous values, 
logistic regression predicts probabilities that an observation 
belongs to a particular class. These probabilities are then 
thresholded to make binary predictions. In logistic regression, 
coefϐicients associated with each predictor variable indicate 
the direction and strength of their impact on the log odds 
of the event occurring. Positive coefϐicients increase the log 
odds, while negative coefϐicients decrease them. Traditional 
logistic regression is a fundamental tool in statistics, offering 
a clear and interpretable way to model binary classiϐication 
problems. 

To evaluate the contribution of each variable, we employed 
different methods for each model. For the XGBoost model, we 
utilized a metric called “gain” to measure the improvement 
in model performance associated with each feature’s use in 
splitting the tree nodes [21]. In the case of the RF model, we 
ranked the important features based on their information gain, 
which reϐlects the decrease in impurity achieved through their 
inclusion [23]. Finally, we compared the important variables 
identiϐied by each model with those determined using the 
traditional logistic regression model. By employing these 
machine learning techniques in traditional logistic regression 
and evaluating the importance of variables, we gained insights 
into the relevance and impact of different features on the 
models’ performance. This comprehensive analysis allows 
for a deeper understanding of the predictive capabilities and 
interpretability of the models, enhancing the overall ϐindings 
of the study.

Training and validation of the machine learning models

In this study, we employed a 10-fold cross-validation 
technique for training the model and evaluating the testing 
data. This approach has been reported to ensure robustness 
and provide a reliable estimation of the model performance. 
The entire dataset was divided into ten (10) non-overlapping 
folds, each containing both training data and test data 
(Figure 2). For each iteration, the model was trained 
exclusively on the training data, allowing it to learn from the 
patterns and relationships within the dataset. The advantage 
of using a k-fold cross-validation method lies in its ability to 
provide a more accurate estimation of model performance by 
capturing the variance in performance across different fold 
combinations. This widely adopted technique has been proven 
effective in various studies [27,28] enabling researchers to 
obtain more reliable and generalizable results.

The study employed a systematic approach to training 
and validating machine learning models using training data. 
Patients in the training set were randomly divided into 
training and test data, ensuring no duplication. Each type of 
training data underwent training and validation using a 10-
fold cross-validation method to assess the model’s predictive 
ability [26]. The best-performing model from the training 
data was then validated on the test data to further evaluate its 
performance. Lastly, the trained models underwent external 
validation using data from separate test data. This rigorous 
process allowed for a comprehensive assessment of the 
models’ accuracy and generalizability. 

During the training phase, the machine learning model 
underwent optimization of its hyperparameters using a grid 
search algorithm. Grid search is a systematic approach to 
ϐine-tuning the model’s hyperparameters in a step-by-step 
manner. In this study, the training data was split into inner 
training data and test data using 10-fold cross-validation, also 
known as nested cross-validation [26]. The purpose of this 
approach was to assess the model’s performance by evaluating 
its effectiveness on the inner test data while ensuring no 
information about the true (outer) test data was leaked.

Using this methodology, the model’s parameters were 
ϐine-tuned without any knowledge of the actual test data, 
thus preventing bias in the optimization process. Following 
the derivation of the model, performance metrics such as 
sensitivity, speciϐicity, accuracy, and area under the curve 
(AUC) were calculated for each set of test data. This resulted 
in 10 different values for each evaluation score, representing 
the variability of the model’s performance. The models are 
developed and validated using the Python scikit-learn library. 
This library provided the necessary tools for implementing the 
model algorithms, performing cross-validation, and executing 
the grid search for hyperparameter optimization.

Testing dataset

Following the completion of model training and internal 

Figure 2: A. Data used for training and testing portion. B. Nested cross-validation. 
This fi gure was extracted from [26] and was modifi ed in the context of our study.



Developing a Machine Learning Algorithm for Improved Management of Congestive Heart Failure Patients in the Emergency Department

www.cardiologymedjournal.comhttps://doi.org/10.29328/journal.jccm.1001167 146

validation, the performance of each model was assessed 
using the testing data. This step aimed to evaluate the 
generalizability and predictive accuracy of the models beyond 
the initial training dataset. The AUC was used as a metric to 
measure the discriminative ability of the models. Furthermore, 
a comprehensive comparison was conducted between various 
machine learning models and traditional statistical models. 
This analysis sought to determine the relative superiority of 
the different modelling approaches in terms of their predictive 
performance. By examining and contrasting the AUC values, 
insights were gained into the strengths and limitations of each 
model, allowing for informed decision-making regarding the 
most suitable approach for clinical use.

Data analysis

The study employed descriptive statistics to analyze 
continuous variables. Normally distributed variables were 
expressed as mean ± standard deviation, while non-normally 
distributed variables were presented as median with 
interquartile range (25th - 75th percentile) [29]. In order to 
assess the superiority of the ML models over the traditional 
LR model, the study selected the ML model with the lowest 
performance and compared it to the traditional LR model. 
The comparison of the model’s AUCs was conducted using 
the Mann-Whitney U test with Bonferroni correction on the 
testing data. This comparison allowed for a comprehensive 
evaluation of the model’s performance in terms of their 
predictive capabilities to assess the models’ discriminative 
ability and determine if there were any statistically 
signiϐicant differences in their performance. To determine 
statistical signiϐicance, two-sided p values of less than 0.05 
were considered. All statistical analyses were conducted 
using R version 4.3.0 (2023-04-21) and Python ensuring a 
standardized and consistent approach to data analysis. 

Results
Baseline characteristics

The study included 9,685 patients in the emergency 
department (ED), 7.4% (n = 666) had developed Congestive 
Heart Failure. The median age for both CHF and no CHF groups 
was 67 years with a similar gender distribution of males 58% 
in both groups. Cardiac Enzymes and Complete Blood Count 
(CBC) Parameters showed signiϐicant differences between the 
two groups. Liver Function Markers like total bilirubin levels 
were signiϐicantly different in both CHF and no CHF groups 
with 0.6 mg/dl and 0.63 mg/dl respectively, while other 
markers remained similar in both groups. The median length 
of stay (LoS) was 11 days for both CHF and no CHF groups. 
The table below suggests a potential association between 
these factors and the presence of CHF (Table 1). 

Comparison between the machine learning models 
and traditional logistic regression models

Comparatively, the Machine Learning Models (RF and 

XGBoost) perform signiϐicantly better across all metrics 
(Table 2). The AUROC metric is particularly notable: Traditional 
LR: 57%, RF: 98%, and XGB: 99% respectively, indicating the 
ability of the models to discriminate between positive and 
negative classes (Figure 3). The results demonstrate that the 
Machine Learning Models, RF, and XGBoost outperform the 
Traditional Logistics Regression model in terms of accuracy, 
recall, speciϐicity, AUROC, precision, and F1 score. These 
ϐindings suggest that the Machine Learning models offer 
improved predictive capabilities for the given task. 

Because the RF model had the lower performance among 
the two machine learning models (Table 2.), the RF model was 
compared with the traditional LR model. The AUC of the RF 

Table 1: Baseline characteristics of CHF and no CHF patients in the emergency 
department.

Variables No CHF (n = 9,019) CHF (n = 666)
Demographics  

Age (yrs.), median (min-max) 67 (15 – 88) 67 (18 – 88)
Gender (Male) n (%) 5,259 (58) 388 (58)
Cardiac Enzymes

Creatine Kinase (IU/L) 116.2 (56.25 – 321.64) 111.25 (56.63 – 361.12)
Complete Blood Count (CBC) 

parameters
MCH (pg.) 30.31 (29.03 – 31.54) 30.27 (29.02 – 31.38)

Platelet count (K/uL) 222.7 (159.5 – 279.7) 219.3 (160.8 – 291.7)
RBC (m/uL) 3.54 (3.16 – 3.8) 3.42 (3.14 – 3.77)
WBC (K/uL) 10.73 (8.37 – 13.83) 10.85 (8.29 – 13.45)

Liver function markers
Albumin (g/dL) 3.1 (2.62 – 3.55) 3.1 (2.66 – 3.6)

Total bilirubin (mg/dL) 0.63 (0.4 – 1.12) 0.6 (0.4 – 0.995)
Creatinine (mg/dL) 1.06 (0.77 – 1.77) 1.08 (0.77 – 1.68)

ALP (IU/L) 89.25 (66.5 – 127.28) 87 (64 – 125.97)
ALT (IU/L) 30 (18 – 62.87) 29 (18.69 - 56.45)

Electrolyte levels
Potassium (mEq/L) 4.07 (3.86 – 4.32) 4.1 (3.86 – 3.34)

Calcium (mg/dL) 8.37 (8 – 8.77) 8.39 (8.01 – 8.75)
Magnesium (mEq/L) 2.03 (1.9 – 2.17) 2.02 (1.9 – 2.17)
Phosphate (mg/dL) 3.45 (3 – 4.02) 3.46 (3.01 – 4.06)

Sodium (mEq/L) 138.9 (136.7 – 141.12) 138.98 (136.4 – 141.02)
Other measures 

pC02 (mmHg) 40 (36 – 44.25) 40.25 (36.31 – 44.89)
INR 1.3 (1.16 – 1.58) 1.3 (1.15 – 1.597)

 LoS (days) 11 (6 – 18) 11 (5 - 18)
WBC: White Blood Cell; RBC: Red Blood Cell; ALP: Alkaline Phosphate; ALT: 
Alanine Aminotransferase; INR: International Normalized Ratio; MCH: Mean 
Corpuscular Hemoglobin; pCO2: partial Pressure of Carbon Dioxide; LoS: Length 
of Stay; mg/dl: milligrams per deciliter; pg: picograms; IU/L: International Units per 
Litre; cm: centimetre (cm); yrs: Years; S.D: Standard Deviation; K/uL: Thousand per 
microliter; m/uL: million per microliter, %: Percentage, mEq/L: milliequivalents per 
liter. Continuous values that are normally distributed were recorded as mean (S.D) 
and others were input as median (IQR), and categorical values (absolute numbers 
and percentages). The Chi-square test was used for the comparison of categorical 
variables and the two-sample t - test for continuous variables.

Table 2: Scores for Each Model With 10-fold Cross-Validation (Table view).
Models Accuracy Recall Specifi city AUROC Precision F1 score

Traditional LR 0.55 0.55 0.57 0.57 0.56 0.56
Machine learning models

RF 0.93 0.95 0.95 0.98 0.92 0.94
XGBoost 0.95 0.95 0.95 0.99 0.96 0.95

AUROC: Area Under Receiver Operator Characteristic; LR: Logistic Regression; RF: 
Random Forest; XGBoost: Extreme Gradient Boosting.
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was signiϐicantly higher than traditional LR using the Mann-
Whitney U test with Bonferroni correction on the testing data. 
(RF vs. traditional LR, p -value = 0.0001), Figure 4.

Multivariate analysis

The results obtained through multivariate logistic 
regression analysis, as shown in Table 3, reveal key factors 
associated with CHF. It’s noteworthy that several variables, 
such as age, creatine kinase, Mean Corpuscular Hemoglobin 
(MCH), platelet count, red blood cell count, ALP, ALT, 
magnesium, and sodium, exhibit a tendency for CHF risk 
to increase by a factor of 1 with each unit increase (OR: 
1.9, 1.16, 1.0078, 1.0002, 1.09, 1.0001, 1.0001, 1.24, 1.02), 
respectively. Conversely, variables like gender, white blood 
cell count, creatinine, albumin, potassium, calcium, pCO2, and 
INR demonstrate a signiϐicant protective effect, as their odds 
ratios (OR) are less than 1, indicating a reduced risk of CHF 
associated with these factors. Furthermore, the protective 

effects observed in variables like gender, white blood cell 
count, creatinine, albumin, potassium, calcium, pCO2, and INR 
suggest the potential for modiϐiable elements that could be 
explored in preventive strategies for managing CHF risk.

Important variables of the machine learning models

The features are ranked based on their relative importance 
in predicting congestive heart failure in the emergency 
department in each of the individual models. The importance 
of features may vary across different models, indicating the 
unique characteristics and patterns each model identiϐies. 
This information is useful for understanding the factors that 
contribute signiϐicantly to the model’s predictions and gaining 
insights into the relationship between these features and CHF 
(Table 4). Figure 3: The receiver operating characteristic curves of the machine learning 

models, and traditional logistic regression model.

Figure 4: A bar graph displaying the mean ± 95% CI of the receiver operating 
characteristic area under the curve (AUC) is presented for the testing data. 
Signifi cant diff erences were observed between the RF model, which performed 
the least, and the traditional LR model. The statistical comparison was conducted 
using the Mann-Whitney U test with Bonferroni correction [30].

Table 3: Multivariate analysis of factors for CHF.

Variables Adjusted Odd Ratio 95% Confi dence 
Interval p - value 

Age (yrs.) 1.9000 (0.9932,1.0037) 0.059*
Gender 0.9700 (0.82,1.15) 0.753

Creatine Kinase (IU/L) 1.1600 (1.00,1.19) 0.011*
MCH (pg) 1.0078 (0.9697,1.0474)  0.013*

Platelet count (K/uL) 1.0002 (0.9995,1.001)   0.021*
RBC (m/uL) 1.0900 (0.92,1.31)        0.015*          
WBC (K/uL) 0.9935        (0.9796,1.0076)  0.303

Albumin (g/dL) 0.9300 (0.79,1.09) 0.350   
Total bilirubin (mg/dL) 1.0200 (0.99,1.04)        0.055*  

Creatinine (mg/dL) 0.9700 (0.9,1.04) 0.377          
ALP (IU/L) 1.0001 (0.9994,1.0008)  0.706  
ALT (IU/L) 1.0001 (0.9999,1.0002)  0.453

Potassium (mEq/L) 0.8900 (0.7,1.13)         0.329
Calcium (mg/dL) 0.9913 (0.8591,1.1439)  0.905  

Magnesium (mEq/L) 1.2400 (0.9,1.73)  0.020*
Phosphate (mg/dL) 1.0700   (0.97,1.18)        0.184  

Sodium (mEq/L) 1.0200        (1,1.04)           0.046*
pC02 (mmHg) 0.9999 (0.9911,1.0087)       0.977

INR 0.9900 (0.89,1.1)        0.021*
WBC: White Blood Cell, RBC: Red Blood Cell; ALP: Alkaline Phosphate; ALT: 
Alanine Aminotransferase; INR: International Normalized Ratio; MCH: Mean 
Corpuscular Hemoglobin; pCO2: partial pressure of Carbon Dioxide; LoS: Length 
of Stay; mg/dl: milligrams per deciliter; pg: picograms; IU/L: International Units Per 
Litre; cm: centimeter (cm); yrs: years; S.D: Standard Deviation; K/uL: Thousand Per 
Microliter; m/uL: million per microliter; %: Percentage; mEq/L: milliequivalents per 
liter. Continuous values that are normally distributed were recorded as mean (S.D) 
and others were input as median (IQR), and categorical values (absolute numbers 
and percentages). The Chi-square test was used for the comparison of categorical 
variables and the two-sample t - test for continuous variables. All p values were 
two-sided. Statistical signifi cance was defi ned as p < 0.05. * Statistically signifi cant.

Table 4: Top 10 Important Features in the Models (Table view).

Top 10
Traditional LR model Machine Learning Models
Logistic Regression Random forest XGBoost

1 gender total bilirubin total bilirubin
2 creatine kinase creatinine Magnesium 
3 total bilirubin creatine kinase creatine kinase
4 phosphate INR albumin
5 sodium ALT platelet
6 creatinine platelet INR
7 calcium age ALT
8 magnesium potassium ALP
9 albumin ALP creatinine

10 ALP WBC potassium
WBC: White Blood Cell; ALP: alkaline Phosphate; ALT: Alanine Aminotransferase; 
INR: international Normalized Ratio.
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Discussion
To the best of our knowledge, this study is the ϐirst to 

compare the predictive ability of machine learning (ML) 
models and the traditional logistic regression (LR) using 
pretreatment features in the emergency department (ED) 
for assisting physicians in resource allocation and triage of 
congestive heart failure (CHF) patients. The results of the 
study demonstrate that all the ML models had signiϐicantly 
superior predictive ability compared to the traditional 
LR model. This highlights the potential of ML methods to 
outperform traditional LR approaches in assisting with the 
triage, resource allocation, and long-term prognostication of 
CHF patients in the ED.

In the testing cohort, the ML models, Random Forest 
(RF) and XGBoost, achieved higher area under the curve 
(AUC) scores of 0.98 and 0.99 respectively, surpassing the 
predictive performance of the previously reported ML models 
with pretreatment covariates [16-18]. The study included 19 
pretreatment variables collected prior to initiating treatment 
of patients with CHF in the ED. One notable difference between 
the traditional LR model and the ML models lies in the ML 
algorithm’s ability to handle non-linearity and effectively 
address challenges associated with multifactorial models, 
such as collinearity and overϐitting. Collinearity of variables 
can pose a signiϐicant problem when performing feature 
selection [31]. 

Our study demonstrates the top 10 variables that were 
important by the ML models and traditional LR. The combined 
ten variables from the three models are total bilirubin, 
creatine kinase, INR, sodium, age, creatinine, potassium, 
gender, ALP, and platelet. Different studies also show the 
relationship between serum electrolytes and CHF. Serum 
sodium, potassium, and calcium levels have prognostic value 
as predictors of mortality in patients with chronic CHF. They 
also play a role in the prediction of short-term mortality for 
patients admitted with heart failure  [32-34] also indicated 
that serum bilirubin and creatinine levels are prognostic 
values of CHF. In CHF, there is evidence of enhanced platelet 
activation and increased platelet aggregation. This abnormal 
platelet function can contribute to the pro-thrombotic state, 
promoting clot formation and impairing blood ϐlow through 
the already compromised cardiovascular system [35,36]. In 
CHF patients, the heart’s inability to effectively pump blood can 
lead to ϐluid accumulation and congestion in various organs, 
including the liver. Liver congestion can cause liver enzyme 
levels to increase, including ALT and ALP [37]. Elevated levels 
of ALT and ALP can indicate liver involvement secondary to 
CHF. Age is a major determinant of the risk for cardiovascular 
disease [38,39]. 

Age is a signiϐicant risk factor for CHF. The prevalence of 
CHF increases with advancing age, and it is more commonly 
observed in older individuals [40-42]. CHF becomes more 
prevalent as people get older. The risk of developing CHF 

doubles for every decade after the age of 60. This is due to 
a combination of factors, including age-related changes in 
the heart, increased prevalence of underlying cardiovascular 
conditions, and cumulative exposure to risk factors over 
time [43]. In CHF, the heart muscle can be under strain and 
experience damage. When heart muscle cells are injured 
or undergo necrosis (cell death), CK is released into the 
bloodstream [44]. Therefore, elevated creatine kinase levels 
can indicate myocardial damage, which can occur in CHF [45].

The top 10 features selected by the models can have 
implications for the triage, resource allocation, and 
prognostication of CHF patients. For triage, triage involves 
prioritizing patients based on the severity of their condition. 
By identifying the important variables, the model can assist 
in accurately assessing the severity of CHF in patients upon 
admission. This information can aid in determining the 
urgency of medical intervention and the appropriate level of 
care required for each patient. Regarding resource allocation, 
resource allocation refers to the efϐicient distribution of 
healthcare resources based on patient needs. The identiϐied 
variables can provide insights into the speciϐic characteristics 
or risk factors associated with CHF. This information 
can guide healthcare providers in allocating resources 
such as specialized medical equipment, personnel, and 
facilities to effectively manage and treat CHF patients. For 
prognostication, prognostication involves predicting the likely 
course and outcome of a disease. The four important variables 
identiϐied by the model may be associated with speciϐic 
prognostic indicators or predictive factors for CHF patients. 
By incorporating these variables into the model, healthcare 
providers can obtain more accurate prognostic assessments 
for individual patients. This information can help in making 
informed decisions regarding treatment plans, follow-up care, 
and potential interventions to improve patient outcomes.

Clinical implication of our fi ndings 

The study’s ϐindings on “Developing a Machine Learning 
Algorithm for Improved Management of Congestive Heart 
Failure Patients in the Emergency Department” have several 
clinical implications:

Triage and resource allocation: The machine learning 
algorithm developed in this study can assist in prioritizing 
CHF patients in the emergency department based on their 
predicted risk or severity. This can optimize resource 
allocation and enable timely interventions for high-risk 
patients.

Prognostication and long-term management: By 
incorporating pretreatment features, the machine learning 
algorithm improves long-term prognostication for CHF 
patients. It helps identify individuals at higher risk of adverse 
outcomes or requiring specialized interventions, enabling 
tailored treatment plans and close monitoring for improved 
long-term management.
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Comparative analysis: Comparing the machine learning 
algorithm with traditional logistic regression provides 
valuable insights into the performance and effectiveness of 
different approaches. The study’s results indicate that the 
machine learning algorithm demonstrates superior predictive 
performance, suggesting its potential adoption in CHF patient 
management to enhance outcomes and resource utilization.

Individualized patient care: The machine learning 
algorithm’s capability to consider various pretreatment 
features enables personalized patient care. By uncovering 
previously unrecognized patterns or relationships, the 
algorithm informs tailored treatment plans and interventions 
for CHF patients, optimizing care delivery and potentially 
improving patient outcomes and satisfaction.

Limitations 

There are several limitations associated with this 
study. Firstly, in order to mitigate the risk of overϐitting, we 
employed a nested cross-validation approach. This technique 
involves training and ϐine-tuning the model in the inner 
layer while estimating its performance in the outer layer, 
thereby enabling unbiased training without any knowledge 
of the external testing data. However, it is worth noting that 
this double-layered analysis framework may be intricate 
for a relatively small dataset. Secondly, while the machine 
learning models exhibited superior performance compared 
to traditional logistic regression, it is crucial to validate 
the developed algorithm on independent and external 
datasets. This validation process ensures that the algorithm’s 
performance remains consistent and reliable across diverse 
patient populations and healthcare settings. Finally, B-type 
natriuretic peptide (BNP) and the N-terminal fragment 
(NT-proBNP) are among the established biomarkers in the 
diagnosis of CHF, the present study did not include them 
because the missing values in them are high. Including these 
features can increase the model performance and assist in 
triage, resource allocation, and long-term prognostication of 
CHF patients.

Conclusion
The machine learning models utilized in the study 

demonstrated better performance compared to traditional 
logistic regression, indicating their potential in enhancing 
patient management and decision-making processes paving 
the way for more efϐicient and personalized care strategies in 
the future. The ML model was also superior to the traditional 
logistic regression. If the model is subjected to further 
validation, the machine learning model may become a useful 
tool to assist in the triage, resource allocation, and long-term 
prognostication of CHF patients. It is important to note that 
the ϐindings of this study provide valuable insights into the 
potential of ML models in improving the management of 
CHF patients in the ED. Further validation and assessment of 
larger and more diverse patient populations are warranted to 

establish the generalizability and robustness of these models 
in real-world clinical settings.
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