Occluded superior vena cava and failed epicardial pacing: An unorthodox solution
Main Article Content
Abstract
Permanent pacemaker implantation is conventionally done via upper limb veins. But in 1% - 6% cases, usual sub clavicular approach is either not possible or contraindicated due to complete occlusion of superior vena cava (SVC) or bilateral subclavian vein and/or bilateral implant site infection or thin skin [1]. Alternative approaches are warranted, including leadless pacemaker or complex lead extraction techniques, before considering surgical epicardial lead placement as a last resort because it has own hazards. We report a patient with complete heart block, total SVC obstruction, and a previously implanted malfunctioning epicardial lead presenting with pacemaker end of life. In view of exhaustion of the surgical option and in a resource constrained situation for lead extraction or leadless pacemaker, transiliac endocardial pacemaker implantation was done and a repeat surgery was averted.
Learning objective: Complete venous occlusion is not very often encountered after pacemaker/ICD implantation. Apart from the risk of general anesthesia and invasive surgery, epicardial leads increase battery drain, and have a shorter operating life compared to an endocardial lead. The sparingly utilized iliac venous approach for permanent pacemaker implantation is a valuable, safe and minimally invasive alternative, when the conventional percutaneous access is unavailable, and surgery is undesirable or not possible.
Article Details
Copyright (c) 2020 Nath RK, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tsutsumi K, Hashizume K, Kimura N, Taguchi S, Inoue Y, et al. Permanent pacemaker implantation via the iliac vein: An alternative in 4 cases with contraindications to pectoral approach. J Arrhythmia. 2010; 26: 55-61.
Seow S, Lim T, Singh D, Yeo W, Kojodijojo P. Permanent pacing in patients without upper limb venous access: a review of current techniques. Heart Asia. 2014; 6: 163–166. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27326197
Rozmus G, Daubert JP, Huang DT, Rosero S, Hall B, et al. Venous thrombosis and stenosis after implantation of pacemakers and defibrillators. J Interv Card Electrophysiol. 2005; 13: 9-19. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15976973
Burri H. Overcoming the challenge of venous occlusion for lead implantation. Indian Pacing Electrophysiol J. 2015; 15: 110-112. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750115/
Tomaske M, Gerritse B, Kretzers L, Pretre R, Dodge-Khatami A, et al. A 12-year experience of bipolar steroid-eluting epicardial pacing leads in children. Ann Thorac Surg. 2008; 85: 1704-1711. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18442570
El Gamal M, Van Gelder B. Preliminary experience with the helifix electrode for transvenous atrial implantation. PACE. 1979; 2: 444–454. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/95313
Mathur G, Stables RH, Heaven D, Ingram A, Sutton R. Permanent pacemaker implantation via the femoral vein: an alternative in cases with contraindications to the pectoral approach. Europace. 2001; 3: 56-59. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11271953
Ellestad MH, French J. Iliac vein approach to permanent pacemaker implantation. Pacing Clin Electrophysiol. 1989; 12:1030-1033. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2476736
Brueck M, Bandorski D, Kramer W, Rauber K. Inferior Vena Cava Approach to Permanent Pacemaker Implantation. PACE 2007; 30: 813-816. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17547621