OPA1 Regulates the Effects of Mitochondrial Dynamics Progress of Research on Different Cells of the Heart against Cardiomyopathy
Main Article Content
Article Details
Copyright (c) 2025 LI D, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, et al. Septic Cardiomyopathy. Crit Care Med. 2018;46(4):625-634. Available from: https://doi.org/10.1097/ccm.0000000000002851
2. Qi Z, Liu R, Ju H, Huang M, Li Z, Li W, et al. microRNA-130b-3p Attenuates Septic Cardiomyopathy by Regulating the AMPK/mTOR Signaling Pathways and Directly Targeting ACSL4 against Ferroptosis. Int J Biol Sci. 2023;19(13):4223-4241. Available from: https://doi.org/10.7150/ijbs.82287
3. Espinola-Zavaleta N, Vega A, Basto DM, Alcantar-Fernández AC, Guarner Lans V, Soto ME. Survival and clinical behavior of hypertrophic cardiomyopathy in a Latin American cohort in contrast to cohorts from the developed world. J Cardiovasc Ultrasound. 2015;23(1):20-6. Available from: https://doi.org/10.4250/jcu.2015.23.1.20
4. Bréchot N, Hajage D, Kimmoun A, Demiselle J, Agerstrand C, Montero S, et al. Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study. Lancet. 2020;396(10250):545-552. Available from: https://doi.org/10.1016/s0140-6736(20)30733-9
5. Lu SM, Yang B, Tan ZB, Wang HJ, Xie JD, Xie MT, et al. TaoHe ChengQi decoction ameliorates sepsis-induced cardiac dysfunction through anti-ferroptosis via the Nrf2 pathway. Phytomedicine. 2024;129:155597. Available from: https://doi.org/10.1016/j.phymed.2024.155597
6. Piamsiri C, Jinawong K, Maneechote C, Arunsak B, Chattipakorn SC, Chattipakorn N. Chronic mitochondrial fusion promotor as a novel pharmacological intervention to alleviate left ventricular dysfunction in rats with chronic myocardial infarction. Eur Heart J. 2022;43(Suppl_2):ehac544.960. Available from: http://dx.doi.org/10.1093/eurheartj/ehac544.960
7. Varuzhanyan G, Chan DC. Mitochondrial dynamics during spermatogenesis. J Cell Sci. 2020 Jul 15;133(14):jcs235937. Available from: https://doi.org/10.1242/jcs.235937
8. Ren L, Chen X, Chen X, Li J, Cheng B, Xia J. Mitochondrial Dynamics: Fission and Fusion in Fate Determination of Mesenchymal Stem Cells. Front Cell Dev Biol. 2020 Oct 15;8:580070. Available from: https://doi.org/10.3389/fcell.2020.580070
9. Lewis M, Lewis W. Mitochondria in tissue culture. Science. 1914;39(1000):330-333. Available from: https://doi.org/10.1126/science.39.1000.330
10. Zhang T, Liu Q, Gao W, Sehgal SA, Wu H. The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy. 2022;18(6):1216-1239. Available from: https://doi.org/10.1080/15548627.2021.1975914
11. Noone J, O’Gorman DJ, Kenny HC. OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle. Trends Endocrinol Metab. 2022;33(10):710-721. Available from: https://doi.org/10.1016/j.tem.2022.07.003
12. Wang C, Liu L, Wang Y, Xu D. Advances in the mechanism and treatment of mitochondrial quality control involved in myocardial infarction. J Cell Mol Med. 2021;25(15):7110-7121. Available from: https://doi.org/10.1111/jcmm.16744
13. Zhu XX, Wang X, Jiao SY, Liu Y, Shi L, Xu Q, et al. Cardiomyocyte peroxisome proliferator-activated receptor α prevents septic cardiomyopathy via improving mitochondrial function. Acta Pharmacol Sin. 2023;44(11):2184-2200. Available from: https://doi.org/10.1038/s41401-023-01107-5
14. Ma T, Huang X, Zheng H, Huang G, Li W, Liu X, et al. SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy. Oxid Med Cell Longev. 2021;2021:9265016. Available from: https://doi.org/10.1155/2021/9265016
15. Han L, Zhang Y, Li J, Xiao Y, Lu M, Li Y, et al. Phloretin attenuation of hepatic steatosis via an improvement of mitochondrial dysfunction by activating AMPK-dependent signaling pathways in C57BL/6J mice and HepG2 cells. Food Funct. 2021;12(24):12421-12433. Available from: https://doi.org/10.1039/d1fo02577e
16. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29(2):270-6. Available from: https://doi.org/10.1093/eurheartj/ehm342
17. Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91-9. Available from: https://doi.org/10.1093/cvr/cvp181
18. Fang L, Moore XL, Gao XM, Dart AM, Lim YL, Du XJ. Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sci. 2007;80(23):2154-2160. Available from: https://doi.org/10.1016/j.lfs.2007.04.003
19. Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, et al. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res. 2012;94(3):408-17. Available from: https://doi.org/10.1093/cvr/cvs117
20. Mohammed SA, Paramesha B, Meghwani H, Kumar Reddy MP, Arava SK, Banerjee SK. Allyl Methyl Sulfide Preserved Pressure Overload-Induced Heart Failure Via Modulation of Mitochondrial Function. Biomed Pharmacother. 2021;138:111316. Available from: https://doi.org/10.1016/j.biopha.2021.111316
21. Chang H, Wang Z, Wu H. Research on the Mechanism of Kangxian Yixin Formula in Regulating Mitochondrial Dynamics and Its Effect on Myocardial Cell Apoptosis in Mice with Dilated Cardiomyopathy. J Beijing Univ Chin Med. 2023;46(10):1391-1399.
22. Luo H, Sun L, Wang Y, et al. Research Progress on Mitochondrial Fusion Protein of Optic Nerve Atrophy Type 1 in Cardiovascular Diseases. Chin J Cardiovasc Dis Res. 2024;22(01):3-7.
23. Li Y, Xu Y, Chen Y. Understanding the Diagnosis and Treatment of Non-Expansive Left Ventricular Cardiomyopathy. J Clin Intern Med. 2024;41(06):374-378.
24. Green A, Hossain T, Eckmann DM. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol. 2022;10:1010232. Available from: https://doi.org/10.3389/fcell.2022.1010232
25. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533-41. Available from: https://doi.org/10.1093/eurheartj/ehq025
26. Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70-99. Available from: https://doi.org/10.1016/j.mam.2018.07.001
27. Cong L, Bai Y, Guo Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med. 2022;9:997469. Available from: https://doi.org/10.3389/fcvm.2022.997469
28. Chapa-Dubocq XR, Rodríguez-Graciani KM, García-Báez J, et al. The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro. Cells. 2023;12(16):2017. Available from: https://doi.org/10.3390/cells12162017
29. Diwan A. Preserving mitochondria to treat hypertrophic cardiomyopathy: From rare mitochondrial DNA mutation to heart failure therapy? J Clin Invest. 2023;133(14):e171965. Available from: https://doi.org/10.1172/jci171965
30. Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett. 2021 Apr;595(8):1184-1204. Available from: https://doi.org/10.1002/1873-3468.14077
31. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066-1077. Available from: https://doi.org/10.1016/j.bbadis.2016.12.013
32. Li M, Wang L, Wang Y, Zhang S, Zhou G, Lieshout R, et al. Mitochondrial Fusion Via OPA1 and MFN1 Supports Liver Tumor Cell Metabolism and Growth. Cells. 2020 Jan 4;9(1):121. Available from: https://doi.org/10.3390/cells9010121
33. Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021;17(5):1142-1156. Available from: https://doi.org/10.1080/15548627.2020.1749490
34. Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014;33(22):2676-91. Available from: https://doi.org/10.15252/embj.201488349
35. A clinical and molecular genetic study of hereditary optic nerve atrophy associated with the OPA1 gene and mechanism research based on patient-derived cell models. 2021.
36. Zhuang Q, Guo F, Fu L, Dong Y, Xie S, Ding X, et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy. J Clin Invest. 2023;133(14):e164660. Available from: https://doi.org/10.1172/jci164660
37. Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38-51. Available from: https://doi.org/10.1038/s41569-022-00739-0
38. Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res. 2017;120(1):179-206. Available from: https://doi.org/10.1161/circresaha.116.306534
39. Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 2021 Nov 1;284:119876. Available from: https://doi.org/10.1016/j.lfs.2021.119876
40. Wang HH, Wu YJ, Tseng YM, Su CH, Hsieh CL, Yeh HI. Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells. Angiogenesis. 2019 Nov;22(4):569-582. Available from: https://doi.org/10.1007/s10456-019-09680-2
41. Makino A, Suarez J, Gawlowski T, Han W, Wang H, Scott BT, et al. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1296-302. Available from: https://doi.org/10.1152/ajpregu.00437.2010
42. Chen Y, Liu C, Zhou P, Li J, Zhao X, Wang Y, et al. Coronary Endothelium No-Reflow Injury Is Associated with ROS-Modified Mitochondrial Fission through the JNK-Drp1 Signaling Pathway. Oxid Med Cell Longev. 2021 Jan 30;2021:6699516. Available from: https://doi.org/10.1155/2021/6699516
43. Chen ZS, Yu MM, Wang K, Meng XL, Liu YC, Shou ST, et al. Omega-3 polyunsaturated fatty acids inhibit cardiomyocyte apoptosis and attenuate sepsis-induced cardiomyopathy. Nutrition. 2023;106:111886. Available from: https://doi.org/10.1016/j.nut.2022.111886
44. Fu Y, Zhang HJ, Zhou W, Lai ZQ, Dong YF. The protective effects of sophocarpine on sepsis-induced cardiomyopathy. Eur J Pharmacol.;950:175745. Available from: https://doi.org/10.1016/j.ejphar.2023.175745
45. Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021 Mar;18(3):169-193. Available from: https://doi.org/10.1038/s41569-020-00435-x
46. Sánchez-Rodríguez R, Tezze C, Agnellini AHR, Angioni R, Venegas FC, Cioccarelli C, et al. OPA1 drives macrophage metabolism and functional commitment via p65 signaling. Cell Death Differ. 2023 Mar;30(3):742-752. Available from: https://doi.org/10.1038/s41418-022-01076-y
47. Yu J, Li R, Xia T, Wang J, Jin J, Yuan M, et al. PDCD4 knockdown ameliorates lipopolysaccharide-induced endothelial cell damage by improving mitochondrial dynamics. Nan Fang Yi Ke Da Xue Xue Bao. 2024;44(1):25-35.
48. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335-346. Available from: https://doi.org/10.1016/j.redox.2017.12.019
49. Li H, Wu F, Huang G, Wu D, Wang T, Wang X, et al. Cardiomyocytes induced from hiPSCs by well-defined compounds have therapeutic potential in heart failure by secreting PDGF-BB. Signal Transduct Target Ther. 2022;7(1):253. Available from: https://doi.org/10.1038/s41392-022-01045-4
50. Zhao Y, Zhu J, Zhang N, Liu Q, Wang Y, Hu X, et al. GDF11 enhances therapeutic efficacy of mesenchymal stem cells for myocardial infarction via YME1L-mediated OPA1 processing. Stem Cells Transl Med. 2020;9(10):1257-1271. Available from: https://doi.org/10.1002/sctm.20-0005
51. Yang Z, Gao Y, Li D. Panaxadiol Saponin alleviates LPS-induced cardiomyopathy similar to dexamethasone via improving mitochondrial quality control. Shock; 2023: 10.1097.