From Beat to Beat: How Electrolytes Shape the Heart's Rhythmic Symphony and Structure

Main Article Content

Mena Abdelsayed
Charles Antzelevitch

Abstract

Cardiac rhythm is fundamental to cardiovascular health, ensuring synchronized electrical impulses that maintain effective heartbeats and blood circulation. Central to this process are electrolytes—sodium, potassium, calcium, magnesium, and chloride—which regulate the generation and propagation of action potentials across cardiac cell membranes. Each electrolyte plays a distinct role in cardiac electrophysiology: sodium drives rapid depolarization, potassium facilitates repolarization, calcium modulates contraction, magnesium stabilizes ion channels, and chloride maintains ionic balance. Electrolyte imbalances, such as hyperkalemia, hypokalemia, hypernatremia, and hypocalcemia, are critical contributors to arrhythmias, contractility issues, and cardiomyopathies. For instance, hyperkalemia actually depresses the upstroke of the action potential by partially depolarizing the resting membrane (inactivating Na⁺ channels), slowing impulse conduction. Similarly, hypercalcemia shortens action potential duration, while hypocalcemia compromises cardiac contractility. Clinically, maintaining electrolyte homeostasis is critical to mitigating arrhythmic risk and improving outcomes in conditions such as atrial fibrillation and heart failure. Advances in therapeutic interventions, including electrolyte supplementation, ion channel modulators, and precision medicine approaches, offer new opportunities for improving cardiac care. Furthermore, understanding the interplay between electrolytes, myocardial ultrastructure, and systemic comorbidities like hypertension and diabetes is critical for developing targeted therapies. This review highlights the pivotal roles of electrolytes in maintaining cardiac rhythm and provides insights into their clinical and therapeutic implications for managing electrolyte-driven cardiac diseases. 

Article Details

Mena Abdelsayed, & Charles Antzelevitch. (2025). From Beat to Beat: How Electrolytes Shape the Heart’s Rhythmic Symphony and Structure. Journal of Cardiology and Cardiovascular Medicine, 10(3), 070–088. https://doi.org/10.29328/journal.jccm.1001212
Review Articles

Copyright (c) 2025 Abdelsayed M, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Morad M, Tung L. Ionic events responsible for the cardiac resting and action potential. Am J Cardiol. 1982;49(3):84-594. Available from: https://doi.org/10.1016/S0002-9149(82)80016-7

2. Azmi NASM, Juliana N, Azmani S, Mohd Effendy N, Abu IF, Mohd Fahmi Teng NI, Das S. Cortisol on circadian rhythm and its effect on cardiovascular system. Int J Environ Res Public Health. 2021;18:676. Available from: https://doi.org/10.3390/ijerph18020676

3. Hayter EA, Wehrens SMT, Van Dongen HPA, Stangherlin A, Gaddameedhi S, Crooks E, et al. Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia. Nat Commun. 2021;12(1):2472. Available from: https://doi.org/10.1038/s41467-021-22788-8

4. Saffitz JE, Corradi D. The electrical heart: 25 years of discovery in cardiac electrophysiology, arrhythmias and sudden death. Cardiovasc Pathol. 2016;25:149–157. Available from: https://doi.org/10.1016/j.carpath.2015.11.005

5. Black N, D’Souza A, Wang Y, Piggins H, Dobrzynski H, Morris G, Boyett MR. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm. 2019;16(2):298–307. Available from: https://doi.org/10.1016/j.hrthm.2018.08.026

6. Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian regulation of cardiac arrhythmias and electrophysiology. Circ Res. 2024;134(6):659–674. Available from: https://doi.org/10.1161/circresaha.123.323513

7. Bennett M, Nault I, Koehle M, Wilton S. Air pollution and arrhythmias. Can J Cardiol. 2023;39(9):1253–1262. Available from: https://doi.org/10.1016/j.cjca.2023.03.023

8. Zhang S, Lu W, Wei Z, Zhang H. Air pollution and cardiac arrhythmias: from epidemiological and clinical evidences to cellular electrophysiological mechanisms. Front Cardiovasc Med. 2021;8:736151. Available from: https://doi.org/10.3389/fcvm.2021.736151

9. Orona NS, Astort F, Maglione GA, Yakisich JS, Tasat DR. Direct and indirect effect of air particles exposure induce Nrf2-dependent cardiomyocyte cellular response in vitro. Cardiovasc Toxicol. 2019;575–587. Available from: https://doi.org/10.1007/S12012-019-09530-Z

10. Kléber AG, Wit AL. The interaction between Na+ and Ca2+ inward currents in cardiac propagation. Circ Res. 2020;127(12). Available from: https://doi.org/10.1161/CIRCRESAHA.120.318316

11. Landaw J, Yuan X, Chen PS, Qu Z. The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue. Am J Physiol Heart Circ Physiol. 2021. Available from: https://doi.org/10.1152/AJPHEART.00608.2020

12. Faggioni M, Knollmann BC. Arrhythmia protection in hypokalemia: A novel role of Ca2+-activated K+ currents in the ventricle. Circulation. 2015;132(15). Available from: https://doi.org/10.1161/CIRCULATIONAHA.115.018874

13. Zandijk AJL, Van Norel MR, Julius FEC, Sepehrvand N, Pannu N, McAlister FA, et al. Chloride in heart failure. JACC Heart Fail. 2021;9:904–915. Available from: https://doi.org/10.1016/j.jchf.2021.07.006

14. Needs D, Wu T, Nguyen HX, Henriquez CS, Bursac N. Prokaryotic voltage-gated sodium channels are more effective than endogenous NaV1.5 channels in rescuing cardiac action potential conduction: an in silico study. Am J Physiol Heart Circ Physiol. 2023;325:H1178–H1192. Available from: https://doi.org/10.1152/ajpheart.00287.2023

15. Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, et al. Structure of the cardiac sodium channel. Cell. 2020;180(1):122–134.e10. Available from: https://doi.org/10.1016/j.cell.2019.11.041

16. Yun G, Baek SH, Kim S. Evaluation and management of hypernatremia in adults: clinical perspectives. Korean J Intern Med. 2022;38(3). Available from: https://doi.org/10.3904/kjim.2022.346

17. Gima K, Rudy Y. Ionic current basis of electrocardiographic waveforms: A model study. Circ Res. 2002;90(8). Available from: https://doi.org/10.1161/01.RES.0000016960.61087.86

18. Dittrich KL, Walls RM. Hyperkalemia: ECG manifestations and clinical considerations. J Emerg Med. 1986;4(6):449-455. Available from: https://doi.org/10.1016/0736-4679(86)90174-5

19. McCullough PA, Beaver TM, Bennett-Guerrero E, Emmett M, Fonarow GC, Goyal A, et al. Acute and chronic cardiovascular effects of hyperkalemia: New insights into prevention and clinical management. Rev Cardiovasc Med. 2014;15(1):11–23. Available from: https://doi.org/10.3909/RICM0727

20. Bartolucci C, Passini E, Hyttinen J, Paci M, Severi S. Simulation of the effects of extracellular calcium changes leads to a novel computational model of human ventricular action potential with a revised calcium handling. Front Physiol. 2020;11:314. Available from: https://doi.org/10.3389/fphys.2020.00314

21. Westhoff M, Dixon RE. Mechanisms and regulation of cardiac CaV1.2 trafficking. Int J Mol Sci. 2021;22:5927. Available from: https://doi.org/10.3390/ijms22115927

22. Barbry A, Masserey-Bonvin V, Petignat PA. [Hypercalcemia: a practical review]. Rev Med Suisse. 2024;20(860):300. Available from: https://doi.org/10.53738/revmed.2024.20.860.300

23. Dalili S, Basiri M, Koohmanaee S, Hassanzadeh Rad A, Maleknejad S. Hypercalcemia etiologies in pediatric patients: An informative narrative review. J Compr Pediatr. 2024;15(3). Available from: https://doi.org/10.5812/jcp-146647

24. Surawicz B, Lepeschkin E, Herrlich HC. Low and high magnesium concentrations at various calcium levels. Circ Res. 1961. Available from: https://doi.org/10.1161/01.RES.9.4.811

25. Mathew AA, Panonnummal R. ‘Magnesium’—the master cation—as a drug—possibilities and evidences. BioMetals. 2021;34:955–986. Available from: https://doi.org/10.1007/s10534-021-00328-7

26. Naveen V, Lenin RR, Stanley LM, Kumar J. Serum magnesium levels and QTc interval prolongation as prognostic markers in acute myocardial infarction: A randomized controlled study. Cureus. 2024;16(8):e66051. Available from: https://doi.org/10.7759/cureus.66051

27. Balashova NV, Orlova SV, Gulia LD, Benia RM, Nikitina EA. The use of magnesium in arythmology. Med Alfavit. 2022;16:115–120. Available from: https://doi.org/10.33667/2078-5631-2022-16-115-120

28. Harvey RD, Hume JR. Chloride channels in heart. In: Handbook of Ion Channels. 2001;500–521. Available from: https://doi.org/10.1016/B978-012656975-9/50021-3

29. Voronina YA, Karhov AM, Kuzmin VS. Chloride channels and transporters – role in the electrical activity of pacemaker and working myocardium. Usp Fiziol Nauk. 2024;55(4):75-90. Available from: https://doi.org/10.31857/s0301179824040041

30. Duan D, Liu LL, Bozeat ND, Huang ZM, Xiang SY, Wang GL, Ye L, et al. Functional role of anion channels in cardiac diseases. Acta Pharmacol Sin. 2005; 26:265–278. Available from: https://doi.org/10.1111/J.1745-7254.2005.00061.X

31. Shiyovich A, Gilutz H, Plakht Y. Serum electrolyte/metabolite abnormalities among patients with acute myocardial infarction: comparison between patients with and without diabetes mellitus. Postgrad Med. 2021;133:395–403. Available from: https://doi.org/10.1080/00325481.2020.1860393

32. Albakri A. Electrolyte/renal abnormalities cardiomyopathy: A review and pooled analysis of pathophysiology, diagnosis and clinical management. Clin Med Investig. 2019;5(1). Available from: https://doi.org/10.15761/CMI.1000202

33. Rafaqat S, Khurshid H, Rafaqat S. Electrolyte’s imbalance role in atrial fibrillation: Pharmacological management. Int J Arrhythm. 2022;23:15. Available from: https://doi.org/10.1186/s42444-022-00065-z

34. Kim AH, Jang JE, Han J. Current status on the therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomed Pharmacother. 2022;145:112463. Available from: https://doi.org/10.1016/j.biopha.2021.112463

35. King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, et al. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch. 2021;473:557–571. Available from: https://doi.org/10.1007/s00424-021-02537-y

36. Patel C, Antzelevitch C. Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm. 2008;5:585–590. Available from: https://doi.org/10.1016/j.hrthm.2008.01.022

37. Gutiérrez LK, Moreno-Manuel AI, Jalife J. The Kir2.1-NaV1.5 channelosome and its role in arrhythmias in inheritable cardiac diseases. Heart Rhythm. 2024;21(5):630-646. Available from: https://doi.org/10.1016/j.hrthm.2024.01.017

38. Combe CL, Gasparini S. Ih from synapses to networks: HCN channel functions and modulation in neurons. Prog Biophys Mol Biol. 2021;166:119–132. Available from: https://doi.org/10.1016/j.pbiomolbio.2021.06.002

39. Ramentol R, Perez ME, Larsson HP. Gating mechanism of hyperpolarization-activated HCN pacemaker channels. Nat Commun. 2020;11:1419. Available from: https://doi.org/10.1038/S41467-020-15233-9

40. Depuydt A, Peigneur S, Tytgat J. HCN channels in the heart. Curr Cardiol Rev. 2022;18(4):13. Available from: https://doi.org/10.2174/1573403X18666220204142436

41. Delimaris I. Hypo- and hypernatremia, hypo- and hyperkalemia, hypo- and hypercalcemia in human plasma: causes, manifestations and treatment. ARC J Surg. 2024;10(2):1-3. Available from: https://doi.org/10.20431/2455-572x.1002001

42. Ilardi A. Diagnostic and therapeutic approach to hypernatremia. Diagnosis. 2022. Available from: https://doi.org/10.1515/dx-2022-0034

43. Tagan G, Benmachiche M. [Hypernatremia in hospital]. Rev Med Suisse. 2023;19(851):2189. Available from: https://doi.org/10.53738/revmed.2023.19.851.2189

44. Brennan M, Mulkerrin L, O’Keeffe ST, O’Shea PM. Approach to the management of hypernatraemia in older hospitalised patients. J Nutr Health Aging. 2021;25(10):1161-1166. Available from: https://doi.org/10.1007/S12603-021-1692-5

45. Asmara H, Kadir SZA, Wan-Arfah N, Meramat A. Effects of hypernatremia on blood pressure and cardiovascular disease: a systematic review and meta-analysis. 2023;1(S):77-85.. Available from: https://doi.org/10.37231/ajmb.2023.1.s.664

46. Emgin O, Eser M, Rollas K, Cakirgoz M. Hypernatremia in intensive care unit. J Crit Care. 2024;81:154592. Available from: https://doi.org/10.1016/j.jcrc.2024.154592

47. Babbili A, Seri AR, Thotamgari SR, Dominic P. Impact of sodium derangements in patients hospitalized with atrial fibrillation without heart failure: a nationwide cohort study. J Card Fail. 2024;30(1):254. Available from: https://doi.org/10.1016/j.cardfail.2023.10.325

48. Lin R, Du N, Feng J, Li J, Li X, Cui Y, et al. Postoperative hypernatremia is associated with worse brain injuries on EEG and MRI following pediatric cardiac surgery. Front Cardiovasc Med. 2023;10:1320231. Available from: https://doi.org/10.3389/fcvm.2023.1320231

49. Jansch C, Matyukhin I, Marahrens M, Lehmann R, Khader B, Ritter O, et al. Hypernatremia: Epidemiology and predictive role in emerging and established acute kidney injury. J Clin Med Res. 2023;15(8–9):399–405. Available from: https://doi.org/10.14740/jocmr4990

50. Zhou Y, Lin D, Wu S, Xiao J, Yu M, Xiao Z, et al. Dysnatremia is associated with increased risk of all-cause mortality within 365 days post-discharge in patients with atrial fibrillation without heart failure: a prospective cohort study. Front Cardiovasc Med. 2022;9:963103. Available from: https://doi.org/10.3389/fcvm.2022.963103

51. Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev. 2021;101:1083–1176. Available from: https://doi.org/10.1152/physrev.00024.2019

52. Li J, Wang S, Zhang J, Liu Y, Zheng X, Ding F, et al. The CaMKII phosphorylation site Thr1604 in the CaV1.2 channel is involved in pathological myocardial hypertrophy in rats. Channels. 2020;14:151–162. Available from: https://doi.org/10.1080/19336950.2020.1750189

53. Schwenzer N. Nanoscale organization of CaV1.3 L-type Ca2+ channel clusters in electrically excitable cells. 2024. Available from: https://doi.org/10.53846/goediss-10518

54. Louradour J, Bortolotti O, Torre E, Bidaud I, Lamb NJC, Fernandez A, et al. L-type Cav1.3 calcium channels are required for beta-adrenergic triggered automaticity in dormant mouse sinoatrial pacemaker cells. Cells. 2022;11(7):1114. Available from: https://doi.org/10.3390/cells11071114

55. Toyoda F, Mesirca P, Dübel S, Ding W-G, Striessnig J, Mangoni ME, et al. CaV1.3 L-type Ca2+ channel contributes to the heartbeat by generating a dihydropyridine-sensitive persistent Na+ current. Sci Rep. 2017;7:7869. Available from: https://doi.org/10.1038/S41598-017-08191-8

56. Angelini M, McVicar M, Maxfield S, Savalli N, John SA, Neely A, et al. Probing the mechanisms of low-voltage activation in T-type CaV3.1 calcium channels. Biophys J. 2024;123;(3):1:112A. Available from: https://doi.org/10.1016/j.bpj.2023.11.792

57. Baudot M, Torre E, Bidaud I, Louradour J, Torrente AG, Fossier L, et al. Concomitant genetic ablation of L-type Cav1.3 (α1D) and T-type Cav3.1 (α1G) Ca2+ channels disrupts heart automaticity. Sci Rep. 2020;10:18906. Available from: https://doi.org/10.1038/S41598-020-76049-7

58. Torrente AG, Mesirca P, Bidaud I, Mangoni ME. Channelopathies of voltage-gated L-type Cav1.3/α1D and T-type Cav3.1/α1G Ca2+ channels in dysfunction of heart automaticity. Pflugers Arch. 2020; 472:817–830. Available from: https://doi.org/10.1007/S00424-020-02421-1

59. Mesirca P, Bidaud I, Mangoni ME. Rescuing cardiac automaticity in L-type Cav1.3 channelopathies and beyond. J Physiol. 2016. Available from: https://doi.org/10.1113/JP270678

60. Tonon CR, Silva TAAL, Pereira FWL, Queiróz DAR, Júnior ELF, Martins DG, et al. A review of current clinical concepts in the pathophysiology, etiology, diagnosis, and management of hypercalcemia. Med Sci Monit. 2022;28:e935821. Available from: https://doi.org/10.12659/MSM.935821

61. Walker MD, Shane E. Hypercalcemia. JAMA. 2022;328(16):1624-1636. Available from: https://doi.org/10.1001/jama.2022.18331

62. Ong H-Y. Clinical hyperkalemia and hypokalemia. In: Textbook of Nephro-Endocrinology. 2008;71–76. Available from: https://doi.org/10.1007/978-1-84628-937-8_13

63. Tamm M, Ritz R, Thiel G, Truniger B. Hyperkalemic emergency: causes, diagnosis and therapy. Schweiz Med Wochenschr. 1990;120(11):369–375. Available from: https://pubmed.ncbi.nlm.nih.gov/2374893/

64. McKellar G, Alfonzo A, Isles C. Hyperkalaemia: causes, electrocardiographic changes and management. J R Coll Physicians Edinb. 2006;36(1):S10–S13. Available from: https://doi.org/10.1177/1478271520063601004

65. Drury ER, Denker BM. Inpatient management of hyperkalemia. In: Hypertension: A Companion to Braunwald’s Heart Disease. 2020;189–197. Available from: https://doi.org/10.1007/978-3-030-38976-5_16

66. Kes P. Hyperkalemia: a potentially lethal clinical condition. Acta Clin Croat. 2001;40(2):129–133. Available from: https://hrcak.srce.hr/14873

67. Hirve AA, Repp AB, Burgess LK. Things we do for no reasonTM: obtaining an electrocardiogram for managing mild hyperkalemia in hospitalized adults. J Hosp Med. 2024;19(4):248–250. Available from: https://doi.org/10.1002/jhm.13288

68. Sinnathamby ES, Banh KT, Barham WT, Hernandez TD, De Witt AJ, Wenger DM, et al. Hyperkalemia: pharmacotherapies and clinical considerations. Cureus. 2024;16(1):e52994. Available from: https://doi.org/10.7759/cureus.52994

69. Bulloch MN, Cardinale-King M, Cogle S, Radparvar S, Effendi M, Jagpal S, Dixit D. Correction of electrolyte abnormalities in critically ill patients. Intensive Care Res. 2024;19-37. Available from: https://doi.org/10.1007/s44231-023-00054-3

70. Crawford A. Hyperkalemia: recognition and management of a critical electrolyte disturbance. J Infus Nurs. 2014;37(1):3–6. Available from: https://doi.org/10.1097/NAN.0000000000000036

71. Liu M, Dudley SC. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants. 2020;9(10):907. Available from: https://doi.org/10.3390/antiox9100907

72. Nishimura M, Nakayama KI, Ishikawa Y. Cardiac arrhythmias caused by electrolyte imbalance. Nihon Rinsho. 1996;54(5):1119–1124. Available from: https://pubmed.ncbi.nlm.nih.gov/8810799/

73. Vashisth T, Mahishale GS, Abdullah BB. A cross-sectional study on prevalence of hypomagnesemia and hypokalemia in patients with STEMI and its relationship with occurrence of arrhythmias. Int J Sci Res Arch. 2024;13(2):2165. Available from: https://doi.org/10.30574/ijsra.2024.13.2.2165

74. Duan D. Phenomics of cardiac chloride channels: the systematic study of chloride channel function in the heart. J Physiol. 2009;587(Pt 10):2163–2177. Available from: https://doi.org/10.1113/JPHYSIOL.2008.165860

75. Hart PJ, Warth JD, Levesque PC, Collier ML, Geary Y, Horowitz B, Hume JR. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart. Proc Natl Acad Sci U S A. 1996;93(13):6343–6348. Available from: https://doi.org/10.1073/PNAS.93.13.6343

76. Hiraoka M, Kawano S, Hirano Y, Furukawa T. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias. Cardiovasc Res. 1998;40(1):23–33. Available from: https://doi.org/10.1016/S0008-6363(98)00173-4

77. Nagel G, Hwang TC, Nastiuk KL, Nairn AC, Gadsby DC. The protein kinase A-regulated cardiac Cl⁻ channel resembles the cystic fibrosis transmembrane conductance regulator. Nature. 1992;360(6401):81–84. Available from: https://doi.org/10.1038/360081A0

78. Warth JD, Levesque PC, Lin M, Geary Y, Horowitz B, Hume JR, Catterall WA. Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart. Cystic Fibrosis Transmembrane Conductance Regulator Cardiac Physiology. 1996. Available from: https://doi.org/10.1073/pnas.93.13.6343

79. Arreola J, López-Romero AE, Pérez-Cornejo P, Rodríguez-Menchaca AA. Phosphatidylinositol 4,5-Bisphosphate and Cholesterol Regulators of the Calcium-Activated Chloride Channels TMEM16A and TMEM16B. In: Advances in Experimental Medicine and Biology. 2023:279–304. Available from: https://doi.org/10.1007/978-3-031-21547-6_10

80. Tembo M, Lara-Santos C, Rosenbaum JC, Carlson AE. PIP2 and Ca2+ regulation of TMEM16A currents in excised inside-out patches. bioRxiv [Preprint]. 2022 Aug 30. Available from: https://doi.org/10.1101/2022.08.30.505925

81. Whitmore SP, Gunnerson KJ. Acid-base and electrolyte disorders in emergency critical care. In: Emergency Management in Critical Care. 2020;301–329. Available from: https://doi.org/10.1007/978-3-030-28794-8_18

82. Dhondup T, Qian Q. Acid-base and electrolyte disorders in patients with and without chronic kidney disease: an update. Electrolyte Blood Press. 2017;15(1):1–10. Available from: https://doi.org/10.1159/000479968

83. Alghamdi A, Rambo AM, Aldawsari NI, Algamdi RA, Albakhit SM, Alshaikh RA, Alayyafi SM, et al. Diagnosis of and management strategies for electrolyte imbalances in critically ill patients. J Healthc Sci. 2024;4(9):1–9. Available from: https://doi.org/10.52533/johs.2024.40906

84. Yamashita RHG, Yamaki VN, Rabelo NN, Welling LC, Figueiredo EG. Acid-base and electrolyte disorders in neurocritical care. In: Textbook of Neurocritical Care. 2021;373–390. Available from: https://doi.org/10.1007/978-3-030-66572-2_21

85. Sjöström A, Rysz S, Sjöström H, Höybye C. Electrolyte and acid-base imbalance in severe COVID-19. Endocr Connect. 2021;10(8):1025–1034. Available from: https://doi.org/10.1530/EC-21-0265

86. Sculier C, Gaspard N. Electrolyte disturbances and critical care seizures. In: Status Epilepticus. 2017;291–310. Available from: https://doi.org/10.1007/978-3-319-49557-6_18

87. Martiszus BJ, Tsintsadze T, Chang W, Smith SM. Enhanced excitability of cortical neurons in low-divalent solutions is primarily mediated by altered voltage-dependence of voltage-gated sodium channels. eLife. 2021;10:e67914. Available from: https://doi.org/10.7554/eLife.67914

88. Zaveri S, Srivastava U, Qu Y, Chahine M, Boutjdir M. Pathophysiology of Cav1.3 L-type calcium channels in the heart. Front Physiol. 2023;14. Available from: https://doi.org/10.3389/fphys.2023.1144069

89. Müller ME, Petersenn F, Hackbarth J, Pfeiffer J, Gampp H, Frey N, et al. Electrophysiological effects of the sodium-glucose co-transporter-2 (SGLT2) inhibitor dapagliflozin on human cardiac potassium channels. Int J Mol Sci. 2024;25(11). Available from: https://doi.org/10.3390/ijms25115701

90. Kekenes-Huskey PM, Burgess DE, Sun B, Bartos DC, Rozmus E, Anderson CL, et al. Mutation-specific differences in Kv7.1 (KCNQ1) and Kv11.1 (KCNH2) channel dysfunction and long QT syndrome phenotypes. Int J Mol Sci. 2022;23(13):7389. Available from: https://doi.org/10.3390/ijms23137389

91. Attali B, Chandy KG, Giese MH, Grissmer S, Gutman GA, Jan LY, et al. Voltage-gated potassium channels (Kv) in GtoPdb v.2023.1. IUPHAR/BPS Guide Pharmacol CITE. 2023;2023(1). Available from: https://doi.org/10.2218/gtopdb/F81/2023.1

92. Nakajo K, Kasuya G. Modulation of potassium channels by transmembrane auxiliary subunits via voltage‐sensing domains. Physiol Rep. 2024;12(6):e15980. Available from: https://doi.org/10.14814/phy2.15980

93. Poornima N, Shabi MM, Biju L, Zuber M, S SP. Cardiac ion channels: insights into mechanisms and modulation. EAS J Pharm Pharmacol. 2024;6(3). Available from: https://doi.org/10.36349/easjpp.2024.v06i03.003

94. Zaritsky JJ, Redell JB, Tempel BL, Schwarz T. The consequences of disrupting cardiac inwardly rectifying K⁺ current (IK1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol. 2001;533(3):697–710. Available from: https://doi.org/10.1111/J.1469-7793.2001.T01-1-00697.X

95. Kurata HT, Phillips LR, Rose T, Loussouarn G, Herlitze S, Fritzenschaft H, et al. Molecular basis of inward rectification: polyamine interaction sites located by combined channel and ligand mutagenesis. J Gen Physiol. 2004;124(5):541–554. Available from: https://doi.org/10.1085/JGP.200409159

96. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K⁺ channels. Science. 1994;266(5187):1068–1072. Available from: https://doi.org/10.1126/SCIENCE.7973666

97. Munawar S, Anderson CL, Reilly L, Woltz RL, Kayani YS, Chiamvimonvat N, et al. Atomic-level investigation of KCNJ2 mutations associated with ventricular arrhythmic syndrome phenotypes. 2024. Available from: https://doi.org/10.1101/2024.10.01.616187

98. Pipatpolkai T, Corey RA, Proks P, Ashcroft FM, Stansfeld PJ. Evaluating inositol phospholipid interactions with inward rectifier potassium channels and characterising their role in disease. bioRxiv. 2020. Available from: https://doi.org/10.1101/2020.09.03.281378

99. Lei M, Salvage SC, Jackson AP, Huang CL-H. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol. 2024;15. Available from: https://doi.org/10.3389/fphys.2024.1342761

100. Vaidyanathan R, Ert HV, Haq KT, Morotti S, Esch S, McCune EC, Grandi E, et al. Inward rectifier potassium channels (Kir2.x) and caveolin-3 domain-specific interaction: implications for Purkinje cell-dependent ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2018;11(1). Available from: https://doi.org/10.1161/CIRCEP.117.005800

101. Cruz FM, Moreno-Manuel AI, Patricia SP, Ruiz-Robles JM, Socuéllamos PG, Gutiérrez LK, Vera-Pedrosa ML, et al. Kir2.1 mutations differentially increase the risk of flecainide proarrhythmia in Andersen Tawil Syndrome. 2024. Available from: https://doi.org/10.1101/2024.12.10.24318629

102. Schumacher SM, McEwen DP, Zhang L, Arendt KL, van Genderen KM, Martens JR. Antiarrhythmic drug-induced internalization of the atrial-specific K⁺ channel Kv1.5. Circ Res. 2009;104(12). Available from: https://doi.org/10.1161/CIRCRESAHA.108.192773

103. Moroni A. VIDēRE EST CREDERE: la struttura ad alta risoluzione del canale del pacemaker HCN4. Rend Cont Accad Naz Lincei Sci Fis Mat Nat. 2022;155. Available from: https://doi.org/10.4081/scienze.2021.776

104. Spinelli V, Sartiani L, Mugelli A, Romanelli MN, Cerbai E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological insights into their function in cellular excitability. Can J Physiol Pharmacol. 2018. Available from: https://doi.org/10.1139/CJPP-2018-0115

105. Saponaro A, Bauer D, Giese MH, Swuec P, Porro A, Gasparri F, Sharifzadeh AS, et al. Gating movements and ion permeation in HCN4 pacemaker channels. Soc Sci Res Netw. 2020;68. Available from: https://doi.org/10.2139/SSRN.3753801

106. Review: HCN channels in the heart. Curr Cardiol Rev. 2022;18(4). Available from: https://doi.org/10.2174/1573403x18666220204142436

107. Henneberger A, Zareba W, Ibald-Mulli A, Rückerl R, Cyrys J, Couderc JP, Mykins B, et al. Repolarization changes induced by air pollution in ischemic heart disease patients. Environ Health Perspect. 2005;113(4):440–446. Available from: https://doi.org/10.1289/EHP.7579

108. Ljungman P, Berglind N, Holmgren C, Gadler F, Edvardsson N, Pershagen G, Rosenqvist M. Rapid effects of air pollution on ventricular arrhythmias. Eur Heart J. 2008;29(23):2894–2901. Available from: https://doi.org/10.1093/EURHEARTJ/EHN463

109. He F, Shaffer ML, Rodriguez-Colon SM, Yanosky JD, Bixler EO, Cascio WE, Liao D. Acute effects of fine particulate air pollution on cardiac arrhythmia: the APACR study. Environ Health Perspect. 2011;119(7):927–932. Available from: https://doi.org/10.1289/EHP.1002640

110. Xue X, Hu J, Xiang D, Li H, Jiang Y, Fang W, et al. Hourly air pollution exposure and the onset of symptomatic arrhythmia: an individual-level case–crossover study in 322 Chinese cities. CMAJ. 2023;195(17):E601–E611. Available from: https://doi.org/10.1503/cmaj.220929

111. Dockery DW, Luttmann-Gibson H, Rich DQ, Link MS, Mittleman MA, Gold DR, Koutrakis P, et al. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defibrillators. Environ Health Perspect. 2005;113(6):670–674. Available from: https://doi.org/10.1289/EHP.7767

112. Li H, Wu G, Weng Z, Sun H, Nistala R, Zhang Y. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids. ACS Sens. 2021;6:2181–2190. Available from: https://doi.org/10.1021/acssensors.0c02330

113. Tazmini K. Electrolyte imbalances with special focus on hypokalemia: cellular pathophysiology and clinical manifestations. 2020.

114. Cunningham JW, Claggett BL, O’Meara E, Prescott MF, Pfeffer MA, Shah SJ, et al. Effect of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFpEF. J Am Coll Cardiol. 2020;76(5):503–514. Available from: https://doi.org/10.1016/j.jacc.2020.05.072

115. Negru AG, Pastorcici A, Crisan S, Cismaru G, Popescu FG, Luca CT. The role of hypomagnesemia in cardiac arrhythmias: a clinical perspective. Adv Cardiovasc Dis. 2022;10(10):2356. Available from: https://doi.org/10.3390/biomedicines10102356

116. Miura Y, Higuchi S, Kohno T, Shiraishi Y, Kitamura M, Nagatomo Y, et al. Association of potassium level at discharge with long-term mortality in hospitalized patients with heart failure. J Clin Med. 2022;11:7358. Available from: https://doi.org/10.3390/jcm11247358

117. Kang SS, Ahn YH, Kang HG, Choi N. Hypokalemia as a risk factor for prolonged QT interval and arrhythmia in inherited salt-losing tubulopathy. Child Kidney Dis. 2023;27(2):105–110. Available from: https://doi.org/10.3339/ckd.23.011

118. Li L, Lutsey PL, Chen L, Soliman EZ, Rooney MR, Alonso A. Circulating magnesium and risk of major adverse cardiac events among patients with atrial fibrillation in the ARIC cohort. Nutrients. 2022;15(5):1211. Available from: https://doi.org/10.3390/nu15051211

119. Enayati A, Gin JH, Sajeev JK, Cooke JC, Carey P, Michael MacPherson, et al. Efficacy of IV magnesium for the management of non-postoperative atrial fibrillation with rapid ventricular response: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2023;34(5):1286–1295. Available from: https://doi.org/10.1111/jce.15911

120. Alkhaqani A. Electrocardiogram morphology changes in patients with electrolytes imbalances. J Med Clin Neurosci. 2023. Available from: https://doi.org/10.61440/jmcns.2023.v1.05

121. Arslan B. Advanced Cardiac Life Support in Electrolyte Imbalance. In: Special Circumstances in Resuscitation. 2024;63–80. Available from: http://dx.doi.org/10.69860/nobel.9786053358923.4

122. Asonitis N, Angelousi A, Zafeiris C, Lambrou GI, Dontas I, Kassi E. Diagnosis, pathophysiology and management of hypercalcemia in malignancy: A review of the literature. Horm Metab Res. 2019;51(12):770–8. Available from: https://doi.org/10.1055/A-1049-0647

123. Contreras-Vite JA, Cruz-Rangel S, Jesús-Pérez JJD, Figueroa IAA, Rodríguez-Menchaca AA, Pérez-Cornejo P, et al. Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models. Pflugers Arch. 2016;468(8):1241–57. Available from: https://doi.org/10.1007/S00424-016-1830-9

124. Duttaroy AK, Mallick R. Composition and function of ion channels and their effects on cardiac remodeling. In: 2024;21–49. Available from: https://doi.org/10.1016/b978-0-323-99570-2.00006-0

125. Exploring single nucleotide polymorphisms in the KCNQ1 gene associated with cardiac disorders. 2023. Available from: https://doi.org/10.21203/rs.3.rs-3059744/v1

126. Gururaja Rao S, Patel NJ, Singh H. Intracellular chloride channels: Novel biomarkers in diseases. Front Physiol. 2020;11:96. Available from: https://doi.org/10.3389/fphys.2020.00096

127. Huang Z, Iqbal Z, Zhao Z, Chen X, Mahmmod A, Liu JQ, et al. TMEM16 proteins: Ca2+-activated chloride channels and phospholipid scramblases as potential drug targets (Review). Int J Mol Med. 2024;54(4):81. Available from: https://doi.org/10.3892/ijmm.2024.5405

128. Minisola S, Romagnoli E, Carnevale V, Scillitani A. Acute management of hypercalcemia. In: The Parathyroids. 3rd ed. 2015;617–29. Available from: https://doi.org/10.1016/B978-0-12-397166-1.00042-4

129. Mitchell SH, Brady WJ. The electrocardiogram in hyperkalemia. In: Hudson KB, Sudhir A, Glass G, Brady WJ, editors. The Electrocardiogram in Emergency and Acute Care. 1st ed. Wiley; 2023;119–124. Available from: https://doi.org/10.1002/9781119266938.ch16

130. Quintero J, Medina C, Penagos F, Montesdeoca J, Orozco G, Saavedra-Castrillón J, et al. Electrocardiographic abnormalities in patients with hyperkalemia: a retrospective study in an emergency department in Colombia. Open Access Emerg Med. 2024;16:133-1444. Available from: https://doi.org/10.2147/OAEM.S455159

131. Roubille F, Tardif JC. New therapeutic targets in cardiology: heart failure and arrhythmia: HCN channels. Circulation. 2013;127(17):1986–96. Available from: https://doi.org/10.1161/CIRCULATIONAHA.112.000145

132. Vakiti A, Mewawalla P. Malignancy-Related Hypercalcemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan– [updated 2025 Mar 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/29494030/

133. Vedantam A, Robertson CS, Gopinath SP. Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus. 2017;43:E2. Available from: https://doi.org/10.3171/2017.7.FOCUS17418

134. Wu Y, Kong XJ, Fan J, Ji CC, Chen XM, Tang AL, et al. Serum electrolyte concentrations and risk of atrial fibrillation: an observational and Mendelian randomization study. BMC Genomics. 2024;25:580. Available from: https://doi.org/10.1186/s12864-024-10197-2

135. Xiao Q, Cui Y. Acidic amino acids in the first intracellular loop contribute to voltage- and calcium-dependent gating of Anoctamin1/TMEM16A. PLoS One. 2014;9(9):e107343. Available from: https://doi.org/10.1371/journal.pone.0099376

136. Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Cardiac small-conductance calcium-activated potassium channels in health and disease. Pflugers Arch. 2021;473(4):477–89. Available from: https://doi.org/10.1007/s00424-021-02535-0

137. Zhao K, Zheng Q, Zhou J, Zhang QP, Gao XL, Liu Y, Li SL, et al. Associations between serum electrolyte and short-term outcomes in patients with acute decompensated heart failure. Ann Med. 2022;55(1):155–67. Available from: https://doi.org/10.1080/07853890.2022.2156595