Mini Review

Thrombolysis, the only Optimally Rapid Reperfusion Treatment

Victor Gurewich*

Published: 23 June, 2017 | Volume 2 - Issue 1 | Pages: 029-034

Thrombolysis with tissue plasminogen activator (tPA) has been plagued by inadequate efficacy and a high risk of intracranial hemorrhage (ICH), which led to its replacement by procedures like percutaneous coronary intervention (PCI) whenever possible. Since this requires hospitalization, it is time-consuming, and compromising salvage of brain tissue and myocardium. Thrombolysis is the only first-line treatment that can provide sufficiently timely treatment for optimal recovery of organ function. However, for this potential to be realized, its efficacy and safety must be significantly improved over the current method. By adopting the sequential, synergistic fibrinolytic paradigm of the endogenous system, already verified by a clinical trial, this becomes possible. The endogenous system’s function is evidenced by the fibrinolytic product D-dimer that is invariably present in blood, and which increases >20-fold in the presence of thromboembolism. This system uses tPA to initiate lysis, which is then completed by the other fibrin-specific activator prourokinase (proUK). Since tPA and proUK in combination are synergistic in fibrinolysis, it helps explain their efficacy at their low endogenous concentrations.

Read Full Article HTML DOI: 10.29328/journal.jccm.1001010 Cite this Article Read Full Article PDF


  1. GISSI-2: a factorial randomised trial of alteplase versus streptokinase and heparin versus no heparin among 12,490 patients with acute myocardial infarction. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico. Lancet. 1990; 336: 65-71. Ref.: https://goo.gl/5BcND7
  2. ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. Lancet 1992; 339: 753-770. Ref.: https://goo.gl/cNYjDk
  3. GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Eng J Med 1993; 329: 673-682. Ref.: https://goo.gl/tDc4Tb
  4. Brophy JM, Joseph L. Placing trials in context using Bayesian analysis. GUSTO revisited by Reverend Bayes. JAMA 1995; 273: 871-875. Ref.: https://goo.gl/j3PpnF
  5. Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA. Fibrinogen lysine residue Aα157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987; 262; 5944-5946. Ref.: https://goo.gl/HNvZ3H
  6. Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982; 257: 2912-2919. Ref.: https://goo.gl/jFRdfA
  7. Liu JN, Gurewich V. A comparative study of the promotion of tissue plasminogen activator and pro-urokinase-induced plasminogen activation by fragments D and E-2 of fibrin. J Clin Invest. 1991; 88: 2012-2017. Ref.: https://goo.gl/NohYzy
  8. Suenson E, Lützen O, Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis. Eur J Biochem. 1984; 140: 513-5229. Ref.: https://goo.gl/nucZSA
  9. Marder VJ, Sherry S. Thrombolytic therapy: current status. N Engl J Med 1988; 318: 1512-1520. Ref.: https://goo.gl/pComu6
  10. Boersma E, Maas ACP, Deckers JW, Simoons ML. Early thrombolytic treatment in acute myocardial infarction: reappraisal of the golden hour. Lancet. 1996; 348: 771-775. Ref.: https://goo.gl/LK4akV
  11. Schofield PM. Acute myocardial infarction: the case for pre-hospital thrombolysis with or without percutaneous coronary intervention. Heart. 2005; 91: 7-11. Ref.: https://goo.gl/YTrUh8
  12. Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost. 1999; 82: 259-270. Ref.: https://goo.gl/y7fZSc
  13. Chandler WL, Jascur ML, Henderson PJ. Measurement of different forms of tissue plasminogen activator in plasma. Clin Chem. 2000; 46: 38-46. Ref.: https://goo.gl/J2j26v
  14. Baglin TP, Landown R, Frasson R, Huntington JA. Discovery and characterization of an antibody directed against exosite 1 of thrombin. J Thromb Haemos. 2016; 4: 137-142. Ref.: https://goo.gl/EJJEmS
  15. Pannell R, Black J, Gurewich V. The complementary modes of action of tissue plasminogen activator (t-PA) and pro-urokinase (pro-UK) by which their synergistic effect on clot lysis may be explained. J Clin Invest. 1988; 81: 853-859. Ref.: https://goo.gl/c3zdcV
  16. Gurewich V, Pannell R. Synergism of tissue-type plasminogen activator (t-PA) and single-chain urokinase-type plasminogen activator (scu-PA) on clot lysis in vitro and a mechanism for this effect. Thromb Haemost. 1987; 57: 372-378. Ref.: https://goo.gl/GgWwzV
  17. Vaughan DE, Vautloutle E, Collen D. Urokinase binds to platelets through a specific saturable, low affinity mechanism. Fibrinolysis. 1990; 4: 141. Ref.: https://goo.gl/hbESgz
  18. Gurewich V, Johnstone MT, Pannell R. The selective uptake of high molecular weight urokinase-type plasminogen activator by human platelets. Fibrinolysis. 1995; 9: 188-195. Ref.: https://goo.gl/KHGDQQ
  19. Grau E, Moroz LA. Fibrinolytic activity of normal human blood monocytes. Thromb Res. 1989; 53: 145-162. Ref.: https://goo.gl/RqjzL9
  20. Longstaff C, Kolev K. Basic mechanisms and regulation of fibrinolysis. J Thromb Haemostas. 2015; 13: 98-105. Ref.: https://goo.gl/UckqPw
  21. Singh I, Burnand KG, Collins M, Luttun A, Collen D, et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation. 2003; 107: 869-875. Ref.: https://goo.gl/Wsb6M2
  22. Rijken DC, Hoylaerts M, Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator. J Biol Chem. 1982; 257: 2920-2925. Ref.: https://goo.gl/yhRLr3
  23. Pannell R, Gurewich V. A comparison of the rates of clot lysis in a plasma milieu induced by tissue plasminogen activator (t-PA) and rec-prourokinase: evidence that t-PA has a more restricted mode of action. Fibrinolysis. 1992; 6: 1-5. Ref.: https://goo.gl/7WYcct
  24. Harpel PC, Chang TS, Verderber E. Tissue plasminogen activator and urokinase mediate the binding of Glu-plasminogen to plasma fibrin I. Evidence for new binding sites in plasmin-degraded fibrin I. J Biol Chem. 1985; 260: 4432-4430. Ref.: https://goo.gl/cGwU86
  25. Liu J, Gurewich V. Fragment E-2 from fibrin substantially enhances pro-urokinase-induced glu-plasminogen activation. A kinetic study using a plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK. Biochemistry. 1992; 31: 6311-6317. Ref.: https://goo.gl/5cRPnh
  26. Petersen LC. Kinetics of reciprocal pro-urokinase/plasminogen activation. Stimulation by a template formed by the urokinase receptor bound to poly (D-lysine). Eur J Biochem. 1997; 245: 316-323. Ref.: https://goo.gl/nkfoqD
  27. Zarich SW, Kowalchuk GJ, Weaver WD, Loscalzo J, Sassower M, Manzo K, Byrnes C, Muller JE, Gurewich V for the PATENT Study Group. Sequential combination thrombolytic therapy for acute myocardial infarction: results of the pro-urokinase and t-PA enhancement of thrombolysis (PATENT) trial. J Am Coll Cardio. 1995; 26: 374-379. Ref.: https://goo.gl/qHExpB
  28. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med. 1993; 329: 1615-1622. Ref.: https://goo.gl/NkBbWC


Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More